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thermodynamic–kinetic
synergistic separation of propyne/propylene in
anion pillared cage MOFs with entropy–enthalpy
balanced adsorption sites†

Yunjia Jiang,‡a Lingyao Wang,‡a Tongan Yan, ‡b Jianbo Hu,‡c Wanqi Sun,a

Rajamani Krishna, d Dongmei Wang,a Zonglin Gu, e Dahuan Liu, b Xili Cui, c

Huabin Xing c and Yuanbin Zhang *a

Propyne/propylene (C3H4/C3H6) separation is an important industrial process yet challenged by the trade-

off of selectivity and capacity due to the molecular similarity. Herein, record C3H4/C3H6 separation

performance is achieved by fine tuning the pore structure in anion pillared MOFs. SIFSIX-Cu-TPA (ZNU-

2-Si) displays a benchmark C3H4 capacity (106/188 cm3 g−1 at 0.01/1 bar and 298 K), excellent C3H4/

C3H6 IAST selectivity (14.6–19.3) and kinetic selectivity, and record high C3H4/C3H6 (10/90) separation

potential (36.2 mol kg−1). The practical C3H4/C3H6 separation performance is fully demonstrated by

breakthroughs under various conditions. 37.8 and 52.9 mol kg−1 of polymer grade C3H6 can be

produced from 10/90 and 1/99 C3H4/C3H6 mixtures. 4.7 mol kg−1 of >99% purity C3H4 can be recovered

by a stepped desorption process. Based on the in situ single crystal analysis and DFT calculation, an

unprecedented entropy–enthalpy balanced adsorption pathway is discovered. MD simulation further

confirmed the thermodynamic–kinetic synergistic separation of C3H4/C3H6 in ZNU-2-Si.
Introduction

Propylene (C3H6) is the world's second largest volume
hydrocarbon with the global production capacity exceeding 140
million tons in 2020. It is a basic olen feedstock for the
manufacture of various polymers and chemicals such as
polypropylene and propylene oxide.1 Originating from the
cracking of crude oil, C3H6 is inevitably mixed with a small
amount of propyne (C3H4), which must be reduced to a ppm
level before further processing as it can severely poison the C3H6

polymerization catalysts.2 The state-of-the-art industrial
technologies for the removal of C3H4 from C3H6 rely on noble-
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metal catalyst based selective hydrogenation, which suffers
from several drawbacks such as high cost, low efficiency and
potential secondary pollution. On the other hand, C3H4 that can
be manufactured from the catalytic or thermal pyrolysis of C3H6

is also a fundamental material for speciality fuel and chemical
intermediates.3 To recover C3H4, solvent extraction is the
current dominant technology, which is not only energy
intensive but also associated with pollution. Thus, it is of urgent
importance to develop new technologies for efficient C3H4/C3H6

separation.
Adsorptive separation based on porous solid adsorbents has

been recognized as a promising alternative technology for gas/
vapor separation because of its eco-friendly nature and energy
efficiency.4–10 However, due to the great similarity in the
molecular size (C3H4: 4.16 × 4.01 × 6.51 Å3, C3H6: 4.65 × 4.16
× 6.44 Å3) and polarizability (C3H4: 55.5× 10−25 cm3, C3H6: 62.6
× 10−25 cm3), the adsorptive separation of C3H4/C3H6 by
molecular recognition is still very challenging.11 Only two
examples of zeolites are reported and their C3H4 capacity is
relatively low.10 Recently, metal–organic frameworks (MOFs)
with tuneable pore size/shape and chemistry have emerged as
a new class of porous materials for the separation of C3H4/
C3H6.12–27 Among them, pcu type anion pillaredMOFs (APMOFs)
with strong Lewis basic functional sites display the benchmark
separation performance.12–18 Nonetheless, the trade-off between
the capacity and selectivity is still a critical problem to overcome.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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For example, SIFSIX-3-Ni (pore size= 4.2 Å, Scheme 1a) as a single-
molecule trap for C3H4 can afford extremely high C3H4/C3H6

selectivity (>200), but the capacity of C3H4 is only 67 cm3 g−1;
SIFSIX-1-Cu (pore size = 8.0 Å, Scheme 1b) can accommodate
a large amount of C3H4 (201 cm3 g−1) by cooperative host–guest
interactions, but the separation selectivity is <10. Besides, these
pillared layered SIFSIX MOFs are not chemically stable and some
are even sensitive to humid air, which hinders the practical
applications.8d,28On the other hand, the kinetic separation of C3H4/
C3H6 has never been reported.

Anion pillared cage-like MOFs with ith-d topology are a new
class of APMOFs.27,29 The rational combination of anion pillars
and tridentate organic linkers provides anion sustained cage-
like APMOFs with ultrahigh chemical stability. In 2021, Wu
et al. discovered the rst pillar-cage ith-d MOF SIFSIX-Cu-TPA
(Scheme 1c) with a complete SiF6

2− cross-link for CO2/C2H2

separation.29 Soon aer, our group reported independently an
isomorphic MOF termed ZNU-2 (TIFSIX-Cu-TPA).27 Considering
the slight change of the organic linker, the metal ion or anion
pillar in pcu-type APMOFs can lead to a dramatic separation
difference, we envision that tuning the pore aperture and pore
window in cage-like APMOFs can also be applied to tune the gas
adsorption properties. Nonetheless, the length and angle
matching between the tridentate ligand and anion pillar is very
signicant to construct the pillar embedding structures. Pillar-
cage Tripp-Cu-SIFSIX with the overlong organic linker 2,4,6-
tris(4-pyridyl)pyridine is not stable upon guest removal since
the mononuclear Cu ion center is only half sustained by SiF6

2−

and coordination unsaturated.30 [Cu3(SiF6)3(TMTPB)4] (FJI-W1)
with triangular ligand 1,3,5-trimethyl-2,4,6-tris(4-pyridyl)
benzene belongs to pillar-layer APMOFs that feature 1D hexag-
onal channels.26 Thus, only the modication of the anion pillar
or metal ion (size difference < 0.1 Å) is a good alternative to ne-
tune the pore structure and chemistry while retaining the
topology. Furthermore, the integration of large cages and
narrow interlaced channels has the potential to show a kinetic
Scheme 1 Strategies to overcome the trade-off of capacity and sele
thermodynamic–kinetic synergism mechanism. (a) Structure of SIFSIX-
Illustration of the thermodynamic–kinetic cooperation for C3H4/C3H6 se

© 2023 The Author(s). Published by the Royal Society of Chemistry
difference for C3H4 and C3H6 molecules with a slight diameter
difference (Scheme 1d), which has not been explored in theory
yet.

With this in mind, herein we prepared three isomorphic
APMOFs using SiF6

2−, TiF6
2−, and NbOF5

2− as the pillars, and
investigated the C3H4/C3H6 adsorption and separation perfor-
mance. To our delight, these three reticular MOFs exhibit quite
distinctive but ordered C3H4 adsorption capacity as well as C3H4/
C3H6 selectivity. The pore size follows the sequence of SIFSIX-Cu-
TPA < TIFSIX-Cu-TPA < NbOFFIVE-Cu-TPA while the C3H4

adsorption capacity and the separation selectivity are
both SIFSIX-Cu-TPA > TIFSIX-Cu-TPA > NbOFFIVE-Cu-TPA.
Benchmark high uptakes of C3H4 are observed both at low
pressure (106 STP cm3 g−1 at 0.01 bar and 298 K) and normal
pressure (188 STP cm3 g−1 at 1 bar and 298 K) on SIFSIX-Cu-TPA.
The C3H4 storage density reached 0.60 and 0.65 g cm−3 at 298
and 278 K, 89% and 97% of the liquid C3H4 density. The
calculated IAST selectivity is 14.6–19.3 depending on the ratio
of C3H4/C3H6 (1/99–50/50). Record high C3H4/C3H6 (10/90)
separation potential (36.2 mol kg−1) is obtained, which is 65%
higher than the previous benchmark of NKMOF-11 without
anion functionalities. Themodestly high C3H4 adsorption heat of
43.2 kJ mol−1 is advantageous for both C3H4 adsorption and
facile regeneration. Simulated breakthroughs indicated SIFSIX-
Cu-TPA displays the best separation performance for C3H4/
C3H6 (10/90) mixtures. Practical separations of C3H4/C3H6 (50/50,
10/90, 1/99) mixtures were also conrmed by breakthrough
experiments. Notably, the practical separation performance
is even superior to that of simulation due to the kinetic
enhancement, which has never been reported in C3H4/C3H6

separation. 37.8 and 52.9 mol kg−1 of C3H6 is produced from the
10/90 and 1/99 C3H4/C3H6 mixtures, respectively. The
productivity is increased to 79.2 mol kg−1 when the process
temperature decreased to 278 K. Such high productivity has never
been achieved by chemically stable porous materials. 4.7 mol
kg−1 of >99% purity C3H4 can be recovered. Repeated
ctivity in C3H4/C3H6 separation in a stable cage-like APMOF by the
3-Ni. (b) Structure of SIFSIX-1-Cu. (c) Structure of SIFSIX-Cu-TPA. (d)
paration.
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breakthrough experiments under dry or humid conditions
showed the complete retention of separation performance,
conrming the high stability of SIFSIX-Cu-TPA for practical
separations. The in situ single crystal structure of C3H4-loaded
SIFSIX-Cu-TPA directly demonstrates the C3H4 binding
conguration under near-saturation conditions, which is distinct
from the previous study.27 Comprehensive modelling studies
including Grand Canonical Monte Carlo (GCMC) simulations,
Molecular Dynamics (MD) simulations and Density Functional
Theory (DFT) calculations were completely applied to investigate
the adsorption/separation process, which indicated that the
contracted channel serves as a single molecule ow channel that
differentiates C3H4/C3H6 kinetically while the large cage provides
high affinity for C3H4 adsorption by cooperative host–guest and
guest–guest interactions. To the best of our knowledge, the
kinetic separation of C3H4/C3H6 has for the rst time been
revealed by MD simulations. The obvious thermodynamic–
kinetic synergism in breakthroughs has never been reported in
porous materials for C3H4/C3H6 separation. Moreover, our study
unprecedentedly disclosed the important role of entropy effects
on C3H4 adsorption and gas cluster assembly in the pores while
the GCMC and DFT based gas binding conguration may not
reect the practical gas binding sites due to the neglect of the
entropy effect.

Results and discussion

The single crystals of isostructural SIFSIX-Cu-TPA (ZNU-2-Si),
TIFSIX-Cu-TPA (ZNU-2-Ti) and NbOFFIVE-Cu-TPA (ZNU-2-Nb)
are all produced by layering a MeOH solution of TPA onto an
Fig. 1 Porous structure and stability test of ZNU-2-M (M = Si, Ti, Nb). (a) Ba
pores and interlaced channels. (c) Structure of the icosahedral CuII cage wit
channel between four cages with the Cu/Cu distance (L2) highlighted
Comparison of the L1 and L2 among ZNU-2-M. (g) Optical microscopy of

300 | Chem. Sci., 2023, 14, 298–309
aqueous solution of CuX (X = SiF6
2−, TiF6

2−, NbOF5
2−). ZNU-2-

Nb has been reported for the rst time (Fig. 1a and b). All of
these three coordination complexes crystallize in three-
dimensional (3D) frameworks with the cubic Pm�3n space
group (Table S1†). The frameworks consist of large icosahedral
cages (∼8.5 Å, Fig. 1c) with 12 outlets and narrow interlaced
channels (∼4 Å, Fig. 1d) that connect four independent cages
(Fig. S6 and S7†). The large cages have abundant Lewis basic F
binding sites in the surface for C3H4 adsorption and storage.
Such interconnected 3D channel pores (Fig. 1e) are distinct
from those of pillar-layer MOFs (e.g. SIFSIX-3-Ni) with straight
1D channels. Due to the tiny size difference of anion pillars, the
pore aperture and channel diameter also show a very slight
difference (<0.05 Å), which is reected in the N/N and Cu/Cu
distances (Fig. 1f). As the channel diameter is very close to the
cross-sections (4.01 × 4.16 Å2 for C3H4 and 4.65 × 4.16 Å2 for
C3H6), a slight shrinking of the channel may provide a much
enhanced kinetic difference in C3H4/C3H6 adsorption. Thus,
ZNU-2-Si with a reduced channel diameter has the potential to
show a remarkable kinetic difference in C3H4 and C3H6

adsorption. In brief, ZNU-2-Si features the most promising
structure to offer benchmark C3H4/C3H6 separation
performance by thermodynamic–kinetic synergism.

Before gas adsorption experiments, the chemical and
thermal stability of ZNU-2-M is fully studied since stability is
a prerequisite for practical use in real-world systems. To our
delight, all three materials are highly stable in humid air and
water as indicated by the PXRD patterns (Fig. S12, S14 and
S15†). To provide straightforward evidence, we take photo-
graphs of the single crystals of ZNU-2-M aer different
sic units to construct ZNU-2-M. (b) Structure of ZNU-2-M with cage-like
h the N/N distance (L1) of TPA highlighted. (d) Structure of the interlaced
. (e) The voids of ZNU-2-Si illustrating the interlinked 3D channels. (f)
single crystals of ZNU-2-M (M = Si, Ti, Nb) after different treatments.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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treatments (Fig. 1g, S86, S88 and S90†). As shown, the single
crystals are still of high quality aer being le in humid air for 6
months, soaking in water for 2 months, soaking in acidic and
basic aqueous solutions or exposure to humid HCl vapor at 323
K for 3 h. Heating at 393 K under vacuum provides desolvated
ZNU-2-M with the same crystal structure as indicated by single
crystal and powder XRD analysis (Fig. 1g, S11, S14, S15 and S86–
S90†). TGA curves showed that the framework of ZNU-2-M is
stable at 523, 581, and 573 K (250, 308 and 300 °C), respectively
(Fig. S13–S15†). The weight reduction between room
temperature and 423 K is ascribed to the loss of solvents
(MeOH/H2O) in the pores of ZNU-2-M.

Encouraged by the ultrahigh stability of ZNU-2-M, we are
interested in investigating their permanent porosity as well as
unary gas adsorption difference between C3H4 and C3H6. At
rst, N2 gas adsorption experiments at 77 K were conducted
(Fig. S16–S19†), which indicated their microporous character
with pore size distribution in the range of 6.27–9.84 Å, 6.56–9.40
Å, and 7.85–9.40 Å, respectively, very close to the pore aperture
Fig. 2 (a) C3H4 adsorption isotherms in the ZNU-2 family at 298 K. (b) C
fluorinated anion hybrid microporous materials. (c) Comparison of the lo
Plot of C3H4 uptake at 0.1 bar vs.N/N distance (L1)/Cu/Cu distance (L2
308 K. (f) Comparison of IAST selectivity of the ZNU-2 family with other
ZNU-2's IAST based separation potential (Dq = C3H4 uptake × 9 − C3H6

MOFs. (h) The isosteric heat of adsorption, Qst, for C3H4 and C3H6 in ZN

© 2023 The Author(s). Published by the Royal Society of Chemistry
of ∼8.5 Å calculated from the single crystal structure. The BET
surface areas and pore volumes are 1339/1380/1281 m2 g−1 and
0.565/0.575/0.521 cm3 g−1, for ZNU-2-Si, ZNU-2-Ti and ZNU-2-
Nb respectively. These BET surface areas are all superior to
the benchmark of SIFSIX-1-Cu (1128 m2 g−1) in pillar-layer
APMOFs.14

Single-component C3H4 adsorption isotherms were then
collected at 298 K (Fig. 2a). At 1 bar, the C3H4 uptakes were 188,
171 and 162 cm3 g−1 for ZNU-2-Si, ZNU-2-Ti and ZNU-2-Nb,
corresponding to 4.52, 4.25, and 4.34 C3H4 molecules adsor-
bed per anion (Fig. 2b). Such a high C3H4/anion ratio means
every free F site can bind 1.13, 1.06, and 1.09 C3H4 molecules,
much higher than those of SIFSIX-2-Cu-i (2.57), TIFSIX-14-Cu-i
(2.31), ZU-62 (2.30) and SIFSIX-3-Ni (1.09) (Fig. 2b). The
adsorption capacities under 0.01 and 0.1 bar were further
compared with those of other MOFs (Fig. 2c). The C3H4 uptake
of ZNU-2-Si at 0.01 bar is record high at 106 cm3 g−1. This
uptake is evenmuch higher than the saturated capacities (1 bar)
of most MOFs, such as ELM-12 (61.4 cm3 g−1),19 SIFSIX-3-Ni
omparison of the C3H4 adsorption isotherms of the ZNU-2 family with
w pressure C3H4 uptake and stability among top-performing MOFs. (d)
). (e) C3H4 and C3H6 adsorption isotherms for ZNU-2-Si at 278, 298 and
MOFs showing high C3H4 capacity (>100 cm3 g−1). (g) Comparison of
uptake) for C3H4/C3H6 (10/90) mixtures with reported top performing
U-2-Si. (i) Adsorption kinetic curves of C3H4 and C3H6 in ZNU-2-Si.

Chem. Sci., 2023, 14, 298–309 | 301
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(66.8 cm3 g−1),14 NKMOF-11 (69.4 cm3 g−1),20 GeFSIX-14-Cu-i
(75.3 cm3 g−1),17 Ca-based MOF (67.4 cm3 g−1),25 UTSA-200
(81.1 cm3 g−1),15 ZU-62 (82.0 cm3 g−1)18 and TIFSIX-14-Cu-i
(86.5 cm3 g−1).17 Interestingly, a good negative linear
relationship between the C3H4 uptakes under low pressure (0.1
bar) and the N/N/Cu/Cu distances is observed (Fig. 2d). Such
a structure–capacity relationship has never been reported
before. Then C3H4 and C3H6 adsorption isotherms on ZNU-2-M
at 278, 298 and 308 K were all collected (Fig. 2e). The C3H6

adsorption capacities are much lower than those of C3H4,
especially in low pressure regions. The C3H4/C3H6 selectivity on
ZNU-2 at 298 K was calculated by using Ideal Adsorbed Solution
Theory (IAST). As shown in Fig. 2f, the selectivity of ZNU-2-Si for
1/99 C3H4/C3H6 is 14.64, which is higher than that of ZNU-2-Ti
(12.53), ZNU-2-Nb (9.84), ZIF-8 (1.9),15 FJI-W1 (2.2),26 Cu-BTC
(3.2),15 MIL-100(Cr) (4.5),15 and SIFSIX-1-Cu (9.0)14 (Fig. 2f).
The increased ratio of C3H4 in the gas mixture results in
increased C3H4/C3H6 selectivity, which is 16.05 and 19.29 for 10/
90 and 50/50C3H4/C3H6 mixtures, respectively. The
simultaneous increase of the C3H4/C3H6 selectivity along the
uptakes or C3H4 ratios suggests the existence of cooperative
interactions inside ZNU-2-Si.

The static C3H4 and C3H6 uptakes from the 10/90 mixture of
C3H4/C3H6 were calculated for the ZNU-2 family and other
leading materials (Fig. S30, S35, S40 and S42–S48†). The
separation potential (Dq = q1y2/y1 − q2)31 as a combined metric
of both selectivity and capacity was utilized here for further
comparison, which showed a trend of ZNU-2-Si (36.2 mol kg−1)
> ZNU-2-Ti (31.0 mol kg−1) > SIFSIX-1-Cu (29.0 mol kg−1)14 >
TIFSIX-14-Cu-i (27.3 mol kg−1)17 > GeFSIX-14-Cu-i (26.3 mol
kg−1)17 > ZNU-2-Nb (25.0 mol kg−1) > SIFSIX-14-Cu-i (24.6 mol
kg−1) > SIFSIX-3-Ni (24.1 mol kg−1)14 > SIFSIX-2-Cu-i (23.4 mol
kg−1)14 > ZU-62 (22.4 mol kg−1)18 > NKMOF-11 (22.0 mol kg−1)20

> ELM-12 (21.2 mol kg−1)19 at 1 bar and 298 K (Fig. 2g). The
isosteric enthalpies of adsorption (Qst) for ZNU-2-M were then
calculated with the Clausius–Clapeyron equation. Qst values at
near-zero loading for C3H4 and C3H6 were 43.2/43.0/41.6 and
35.5/34.5/32.4 kJ mol−1, respectively (Fig. 2h, S28, S33 and
S38†). The Qst values for C3H4 in the ZNU-2 family are lower
than those of most MOFs for C3H4/C3H6 separation such as ZU-
62 (71.0 kJ mol −1),25 SIFSIX-3-Ni (68.0 kJ mol−1),14 NKMOF-1-Ni
Fig. 3 Single crystal structure of C3H4 loaded ZNU-2-Si. (a) A holistic vi

302 | Chem. Sci., 2023, 14, 298–309
(65.1 kJ mol −1),25 Ca-based MOF (55.4 kJ mol −1),25 UTSA-200
(55.3 kJ mol−1),15 ELM-12 (60.6 kJ mol −1)19 and SIFSIX-2-Cu-i
(46.0 kJ mol −1),14 but slightly higher than that of SIFSIX-1-Cu
(37.2 kJ mol−1)14 (Table S18†). Such modestly high Qst not
only facilitates preferential C3H4 adsorption, but also allows the
facile recovery of C3H4 by desorption under mild conditions. To
further compare the adsorption difference of C3H4 and C3H6 on
ZNU-2-Si, we studied the kinetic adsorption behavior. The
adsorption rate of C3H4 in ZNU-2-Si is faster than that of C3H6.
This means that the intra-crystalline diffusion of C3H4 is faster
than that of C3H6 (Fig. 2i). To the best of our knowledge, such
kinetic difference has not been reported in pillar-layered
APMOFs for C3H4/C3H6 separations. Besides, adsorption
thermodynamics and diffusion are usually anti-synergistic as
stronger adsorption oen implies reduced mobility.32

Therefore, ZNU-2-Si with thermodynamic–kinetic synergism is
highly promising to provide benchmark practical C3H4/C3H6

separation performance.
To obtain direct host–guest interaction information between

ZNU-2-Si and adsorbed gases, we introduced C3H4 and C3H6

into the desolvated ZNU-2-Si and measured it in the single
crystal X-ray diffractometer. Due to the high stability of ZNU-2-
Si, the C3H4 and C3H6 loaded structures are ambiguously
resolved (Fig. 3 and S10†). 24 C3H4 molecules and 18 C3H6

molecules are adsorbed per cell, equal to 4 C3H4 and 3 C3H6

molecules for every SIFSIX anion, consistent with the
experimental results. Aer adsorption, the framework remained
in the same cubic Pm�3n space group with negligible bond or
angle changes (Table S2†). From the in situ crystals, C3H4

showed disorder into two overlapping congurations. The
conguration with the alkynyl C–H end closer to SiF6

2− is
chosen to be discussed in the following text. The hydrogen bond
distances between the terminal C3H4 hydrogen and F atom of
SiF6

2− are all 2.576 Å. Interestingly, no single C3H4 molecule is
completely loaded in the narrow interlaced single molecule
channel, which was previously considered as the best energy
favored single molecule binding site.27 Instead, four C3H4

molecules are equally close to the interlaced channel while their
alkynyl C–H ends are inside (Fig. 3b). On the other hand, all
C3H4 molecules can be considered to locate in the large cage
with their C–H end reaching outside (Fig. 3c). Therefore, every
ew. (b) View around the interlaced channel. (c) View around the cage.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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large cage can accommodate 12 C3H4 molecules. The C3H6

adsorption sites are very close to that for C3H4. Due to the high
symmetry, every free F atom is able to bind 0.75 C3H6 molecules
(Fig. S10†). Strangely, the hydrogen bond distance (2.108 Å)
between terminal]CH2 and the F atom is even shorter than the
^C–H/F distance. Thus, DFT calculations are applied
to directly compare their binding energies, which will be
discussed in the next part.

The structure of ZNU-2-Si with less C3H4 loading is also
obtained by controlling the adsorption pressure at 0.01 bar.
However, due to the ultrahigh adsorption uptake of C3H4 under
low pressure, there is still a large amount of C3H4 observed in
the cage of ZNU-2-Si and the binding sites are the same. The
only difference is the occupancy of every C3H4 molecule is only
ca. 50%, equal to 6 C3H4 molecules in every cage. Such uptake is
close to the experimental adsorption capacity (106 cm3 g−1)
under 0.01 bar.

In most of the literature, bond length is used to compare the
interaction strength. However, in our case, the ^C–H/F
distance (2.576 Å) is longer than the ]CH/F distance (2.108
Å), making it difficult to judge which interaction is stronger as
the acidity of the ^C–H hydrogen is stronger than that of ]
CH2. Thus, crystallography based DFT calculation is applied to
Fig. 4 The DFT-D calculated interaction energy of ZNU-2-Si and gas mo
and b) A C3H4 or C3H6 molecule located in a cage. (c and d) Six C3H4 or C
neighbouring interlaced channels. (f) 24 C3H4 molecules in a unit cell.

© 2023 The Author(s). Published by the Royal Society of Chemistry
calculate the bonding energy. First of all, we calculate the
bonding energy between the framework and single gas
molecule. To our delight, the results indicated the binding
energy between a single C3H4 molecule and ZNU-2-Si is −39.35
kJ mol−1 (Fig. 4a) while that for C3H6 is only −34.26 kJ mol−1

(Fig. 4b), indicating the interaction between C3H4 and ZNU-2-Si
is stronger. The binding energy difference (5.09 kJ mol−1) is also
close to the experimental Qst difference (7.7 kJ mol−1).

The binding energies of ZNU-2-Si and six gas molecules were
also calculated, which are −42.57 and −36.93 kJ mol−1 for C3H4

and C3H6 (Fig. 4c and d), respectively. These binding energies
can be separated into two parts: ZNU-2-Si/gas (host–guest)
interaction energy and gas/gas (guest–guest) interaction
energy. For C3H4, the ZNU-2-Si/C3H4 binding energy is still
−39.35 kJ mol−1 and the interaction energy of six C3H4/C3H4

molecules is −3.22 kJ mol−1 (Fig. 4c). For C3H6, the ZNU-2-Si/
C3H6 binding energy is −34.27 kJ mol−1 and the interaction
energy of six C3H6/C3H6 molecules is −2.66 kJ mol−1 (Fig. 4d).
These results indicated that the C3H4/C3H4 interactions are
stronger than C3H6/C3H6 interactions in the conned cavity
while the ZNU-2-Si/gas molecules remained nearly unchanged
with the loading increase.
lecules under different loadings based on the single crystal structure. (a

3H6 molecules located in a cage. (e) 8 C3H4 molecules located near two
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To gain more insight into the C3H4/C3H4 cluster, we choose
another two models with different C3H4 molecules for
comparison. Fig. 4e displays the structure of 8 C3H4 molecules
in two neighboring interlaced channels, where the C3H4/C3H4

interaction energies increased to −4.89 kJ mol−1. Fig. 4f
displays the complete loading of C3H4 molecules in the cages
(i.e. 24 C3H4 molecules in a unit cell), where the C3H4/C3H4

interaction energies are further increased to −8.46 kJ mol−1.
These results unambiguously revealed the boosted C3H4

adsorption behavior in ZNU-2-Si through cooperative guest/
guest interactions.

To gain more insight into the gas adsorption behavior,
GCMC simulations were performed, which indicated two
distinct binding sites: one located completely in the interlaced
channel and the other completely inside the cage. Moreover, the
results indicated that 30 C3H4 molecules can be adsorbed in
a single unit cell at 298 K and 1 bar (Fig. S68†), equal to 209 cm3

g−1 for ZNU-2-Si, similar to the experimental value of 188 cm3

g−1. DFT calculations were then applied to identify the
adsorption conguration and binding energies of C3H4 in ZNU-
2-Si. Fig. 5a shows that the C3H4 molecule in the rst binding
site is completely in the interlaced channel. The three hydrogen
atoms from the methyl group in C3H4 strongly interact with
three F atoms at the sharing edges of four different cages. The
hydrogen bond distances are 2.24, 2.73, 2.86 and 2.89 Å.
Besides, multiple additional weak van der Waals interactions
exist with the C/H distances of 2.68, 2.77 and 2.85 Å
(Fig. S56†). All of these interactions contribute to a high binding
Fig. 5 The DFT-D optimized C3H4 adsorption configuration based on G
site I inside the interlaced channel. (b) Binding site II inside the cage. (c–

304 | Chem. Sci., 2023, 14, 298–309
energy of −55.31 kJ mol−1. The second binding site located
inside the cage adsorbs C3H4 by two strong hydrogen bonds
between the terminal hydrogen of C3H4 and two adjacent F
atoms with distances of 2.29 and 2.31 Å (Fig. 5b). This binding
energy is −42.87 kJ mol−1. The binding energy for the second
C3H4 molecule inside the cage increases to −46.45 kJ mol−1.
Thus, the average binding energy of two C3H4 molecules inside
the cavity is −44.66 kJ mol−1. In addition, the binding energies
increase to −48.98, −49.72, and −50.55 kJ mol−1 for accom-
modation of 6, 10 and 13 C3H4 molecules in a cage, respectively
(Fig. 5c–f). To provide direct comparison, the GCMC simulation
result with 24 C3H4 molecules located both in the narrow
channel and the large cage was chosen as a model for
optimization. DFT calculation indicated the average bonding
energy is−50.85 kJ mol−1 (Fig. S69a†), which is still higher than
that (−47.81 kJ mol−1) based on the single crystal structure.
Moreover, the GCMC optimized C3H4 congurations (i.e. 6 C3H4

molecules completely in the 6 narrow channels and 18 C3H4

molecules in two large cages) do not display distinct changes
under DFT optimization.

As described above, the GCMC based DFT calculation obvi-
ously provided more energy favorable binding sites for C3H4

molecules compared to those based on the single crystal
structure. Then why do C3H4 molecules not follow this pathway
for accommodation? Analysis of the cage-channel structure
indicates that the narrow interlaced channel is the only passage
that connects cages. Gas molecules in cage I must pass through
the intersection to reach cage II. Thus, once the intersection is
CMC simulation and bonding energy of C3H4 in ZNU-2-Si. (a) Binding
f) 2, 6, 10, and 13 C3H4 molecules adsorbed inside the cage.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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occupied, the diffusion is limited. Moreover, the entropy of
C3H4 in the interlaced channel is the lowest because the
rotation is highly restricted in the narrow channel. The
diffusion of C3H4 from the intersection to the large cages is
entropy favorable. Therefore, the experimentally observed C3H4

binding conguration is an entropy–enthalpy balanced result.
As GCMC simulations neglect the inuence of diffusion or
entropy effect, they may not reect the real binding sites in
biporous materials.33 Binding site I (Fig. 5a) can be the exact
location for the adsorption of the rst C3H4 molecule under
extremely low pressure. Once the pressure or number of C3H4

molecules increases, the diffusion or entropy effect becomes
obvious, and the symmetrical binding sites in Fig. 4 to provide
higher entropy are favored. On the other hand, the nal C3H4

adsorption conguration can be considered as the result of
competitive adsorption of C3H4 from different cages. Due to the
high symmetry of the framework, four C3H4 molecules in the
neighbouring large cages show the same potential to enter the
interlaced channel to be strongly trapped but this narrow
channel can only accommodate a single C3H4 completely. Thus,
four C3H4 molecules squeeze their smaller^C–H ends into the
interlaced channel but leave their larger ^C–CH3 ends outside
of the channel. We further calculate the bonding energy
between 24 C3H4 molecules and ZNU-2-Si based on single
crystal structures with all molecules relaxed (Fig. S69b†). In this
case, the binding energy of −50.42 kJ mol−1 is only slightly
inferior to the GCMC result (−50.85 kJ mol−1), which is easy to
Fig. 6 MD simulations. (a–c) MSD plot of C3H4 and C3H6molecules in ZN
MD simulation of C3H4 (d) and C3H6 (e) molecules at 0, 2500, and 5000

© 2023 The Author(s). Published by the Royal Society of Chemistry
be covered by the entropy penalty. In brief, GCMC based DFT
calculations can provide some information on the initial
adsorption while in situ single crystal structures give the direct
adsorption behavior under the measured conditions.

To gain some insight into the distinct adsorption kinetic
difference of C3H4 and C3H6 in ZNU-2-Si as well as to provide
more evidence for the entropy effect, MD simulations were
carried out. The congurations of C3H4 and C3H6 molecules
are based on the GCMC simulations and the whole framework
is considered exible except the Cu atoms. Fig. 6a–c illustrate
the MSD in the x, y and z directions for 1, 4, and 7 C3H4 or C3H6

molecules per cage of ZNU-2-Si respectively. These graphs
show that within the period of 5000 ps, the C3H4 molecules can
migrate to other cages through the interlaced channels freely
independent of the pressure, namely the number of C3H4

molecules located in a cage (Fig. 6d, S70, S71 and S73†).
However, the C3H6molecules can only move inside the original
cage and are not able to spread to other cages until the number
of molecules accommodated in a single cage reaches 5 (Fig. 6e,
S70, S72 and S74†). MD-derived C3H4 and C3H6 diffusion
coefficients in ZNU-2-Si were further calculated. The values are
4.72 × 10−11/6.79 × 10−14, 4.89 × 10−11/4.64 × 10−13, and 7.55
× 10−11/2.50 × 10−11 m2 s−1 for 1, 4 and 7 C3H4 or C3H6

molecules located inside a cage. Therefore, the diffusion
coefficient of C3H4 is much higher than that of C3H6, especially
under low pressure with the number of the gas molecules in
a cage less than 5 (Table S20†). In other words, the diffusion
U-2-Si with 1, 4 and 7molecules in a single cage. (d and e) Snapshots of
ps.
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rate of C3H4 in ZNU-2-Si is much faster than that of C3H6. The
C3H4/C3H6 kinetic selectivity is as high as ∼695 under low
pressures and ∼3.0 under high pressures. Such high kinetic
selectivity has never been found in porous materials for C3H4/
C3H6 separation, which is highly related to its unique frame-
work structure with large cavities and narrow channels. Since
the cages are connected by narrow interlaced channels, the gas
molecules must pass through the channels when they need to
diffuse from one cage to another. As the cross-section of C3H6

(4.65 × 4.16 Å2) is larger than that of C3H4 (4.01 × 4.16 Å2),
larger pressure is needed to expand the channel sizes (original
size ∼ 4 Å) by the rotation of the pyridine ring. Therefore, the
narrow interlaced channels can be regarded as molecular
sieves to allow the C3H4 molecules to pass through while
prohibiting the migration of the C3H6 molecules under certain
pressures. Only when the pressure increased to a higher degree
did the gate opening (i.e. ligand rotation) allow C3H6 to diffuse
fast within different cages.

We also tried MD simulation considering the framework is
completely rigid. In this case, it is very difficult for both C3H4

and C3H6 molecules to diffuse from one cage to another due to
the limitation of the over-contracted intersection (∼4 Å).
Therefore, the free energies of C3H4 and C3H6 moving from
the narrow channels to the large cages were compared by
calculating the potential of mean force (PMF). The results are
presented in Fig. S75† which showed that C3H4 has a lower free
energy barrier than C3H6, suggesting the diffusion of C3H4 is
much easier than C3H6.
Fig. 7 (a) Simulated breakthrough curves of ZNU-2-Si and other top-p
calculated productivity of C3H6 in >99.996% purity and separation pote
through curves of ZNU-2-Si and ZNU-2-Ti for C3H4/C3H6 (10/90). (d) Exp
C3H4/C3H6 (50/50) at 298 K. (e) Experimental breakthrough curves of ZN
breakthrough curves of ZNU-2-Si for C3H4/C3H6 (1/99) at 298 K under
cycles: Ar flow rate 20 mL min−1 at 393 K).

306 | Chem. Sci., 2023, 14, 298–309
To evaluate the practical separation performance of ZNU-2-Si
for selective C3H4/C3H6 separation, transient breakthrough
simulations were conducted for the 10/90 C3H4/C3H6 mixture.
The results showed that highly efficient separations could be
accomplished by ZNU-2-Si (Fig. 7a). The productivity of C3H6

(>99.996% purity) in a single adsorption process is also
calculated for ZNU-2-Si and other benchmark materials, which
showed ZNU-2-Si has the record C3H6 productivity of 30.8 mol
kg−1 (Fig. 7b), consistent with the separation potential DqIAST
based on the static gas adsorption isotherms. Experimental
breakthrough studies with the C3H4/C3H6 (10/90) mixture
owed over a ZNU-2-Si packed column with a ow rate of 4 mL
min−1 at 298 K were then carried out. The experimental results
were superior to the simulated one and 37.8 mol kg−1 of high
purity C3H6 can be produced (Fig. 7c). Such enhancement can
be attributed to the existence of the kinetic effect, which has
never been reported in C3H4/C3H6 separation. For isomorphic
ZNU-2-Ti, the kinetic enhancement is not obvious. The
experimental C3H4 productivity (25.50 mol kg−1) is even slightly
lower than that of the simulation (25.93 mol kg−1). The
difference between ZNU-2-Si and ZNU-2-Ti can be accounted for
by the reduced channel aperture in ZNU-2-Si that increases the
diffusion difference in C3H4/C3H6 adsorption.

To thoroughly identify the separation performance of ZNU-2-
Si, we conducted more breakthrough experiments under
various conditions. C3H4/C3H6 mixtures containing a higher
ratio (50%) or lower ratio (1%) of C3H4 were tested. In both
cases, clean C3H4/C3H6 separations were achieved. For the 50 :
erforming materials for C3H4/C3H6 (10/90) at 298 K. (b) Plots of the
ntial DqIAST. (c) Comparison of the experimental and simulated break-
erimental breakthrough curves and desorption curves of ZNU-2-Si for
U-2-Si for C3H4/C3H6 (1/99) at 278, 298, and 308 K. (f) Experimental

dry and humid conditions (activation conditions of ZNU-2-Si between

© 2023 The Author(s). Published by the Royal Society of Chemistry
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50 C3H4/C3H6 mixture, the retention time of C3H4 is over twice
that of C3H6. 7.06 mol kg−1 of C3H4 was captured in the column
with a purity of ∼86% (Fig. 7d). Controlling the desorption
conditions, 4.7 mol kg−1 of >99% purity C3H4 can be recovered
from the column by evacuation aer blowing C3H6 out rstly
(Fig. 7d and S81†). This record high dynamic productivity of
C3H4 is impossible to obtain by other APMOFs due to their low
C3H4 capacity. For the 1 : 99 C3H4/C3H6 mixture, C3H6 broke out
at ∼18 min and became saturated immediately while C3H4 was
not detected until ∼156 min and reached saturation slowly
(Fig. 7e). The calculated experimental productivity of C3H6 from
the 1 : 99 C3H4/C3H6 mixture at 298 K is 52.9 mol kg−1, much
higher than those of SIFSIX-1-Cu (5.0 mol kg−1), ELM-12 (15.0
mol kg−1), SIFSIX-3-Ni (20.0 mol kg−1), SIFSIX-2-Cu-i (25.5 mol
kg−1) and ZNU-2-Ti (42.0 mol kg−1). Upon lowering the
experimental temperature to 278 K, the productivity of C3H6

increased to 79.20 mol kg−1, exceeding that of UTSA-200 (62.9
mol kg−1, 298 K)15 and NKMOF-11 (74.4 mol kg−1, 298 K)20

(Fig. 7e and S79†). Due to its extremely high water stability, we
further carried out the breakthrough experiments under humid
conditions. The C3H4/C3H6 (1 : 99) mixture was rstly bubbled
into a bottle full of water and then introduced into the column
packed with ZNU-2-Si. The humidity was measured constantly,
which was stable at ∼60% aer reaching equilibrium. From the
repetitive humidity tests, it can be concluded that the inuence
of moisture is negligible for C3H4/C3H6 separation in ZNU-2-Si
(Fig. 7f). Finally, the breakthrough experiments were
conducted for six cycles, and the excellent separation capacity of
ZNU-2-Si was retained, indicating that ZNU-2-Si possesses
a high cycling stability (Fig. S84 and S85†). In summary, ZNU-2-
Si sets a new record for practical simultaneous C3H6

purication and C3H4 recovery/storage by the combination of
high productivity of polymer grade C3H6, large amount recovery
of C3H4, retention of separation performance under
humid conditions, outstanding recycling capacity and facile
regeneration conditions.

Conclusions

In conclusion, we reported a chemically stable MOF, ZNU-2-Si,
with large three-dimensional pores and narrow interlaced
channels for record propyne storage and propyne/propylene
separation. Notable features of this work include: (1)
benchmark C3H4 capacity of 106 cm3 g−1 under a low pressure
of 0.01 bar; (2) extremely high C3H4 storage capacity (188 cm3

g−1, 298 K) and storage density (0.60/0.65 g cm−3 at 298/278 K)
at 1.0 bar; (3) record high C3H4/C3H6 (10/90) separation
potential (36.2 mol kg−1); (4) record high experimental C3H6

productivity (37.81 mol kg−1) from 10/90 C3H4/C3H6 mixtures;
(5) record high >99% purity C3H4 recovery (4.7 mol kg−1) from
a 50/50 C3H4/C3H6 mixture by a stepped desorption process; (6)
benchmark experimental C3H6 productivity (52.9/79.2 mol kg−1

at 298/278 K) from 1/99 C3H4/C3H6 mixtures; (7) excellent
breakthrough recyclability and performance retention under
humid conditions; (8) unprecedented revelation of the
adsorption and separation mechanism by in situ single crystal
analysis and GCMC/MD simulations and DFT calculations. In
© 2023 The Author(s). Published by the Royal Society of Chemistry
general, our work not only proposes a strategy of using MOFs
with large cages and narrow channels for thermodynamic–
kinetic synergistic separation, but also highlights the
importance of combining the in situ single crystal structure
analysis and theoretical studies to investigate the adsorption/
separation mechanism. These cage-like APMOFs with optimal
pore chemistry and pore structures are supposed to be
promising for many other challenging gas separations.
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I General Information and Procedures

Unless otherwise noted, all the reactions were performed under air without N2 or Ar

protection. All reagents were used as received without purification unless stated

otherwise.

Chemicals: Tri(pyridin-4-yl)amine (TPA, 99%) was purchased from Tensus Biotech

Company. 4,4’-Bipyridine (98%) and pyrazine (99%) were purchased from Energy

Chemical. 1,2-Di(pyridin-4-yl)ethyne (97%) and 1,2-di(pyridin-4-yl)diazene (98%)

wee purchased from Chemsoon. The purity of the organic compound was identified

by 1H NMR and 13C{1H} NMR. Cu[NO3]2·3H2O (99%), Ni(BF4)2 (99%) ，

(NH4)2GeF6 (99.99%), (NH4)2SiF6 (99.99%) and CuO (99%) were purchased from

Energy Chemical. (NH4)2TiF6 (98%) was purchased from Alab Chemical. Nb2O5 was

purchased from Macklin. Aqueous H2SiF6 (35%) was purchased from Alfa Aesar. HF

(≥ 40%) was purchased from Greagent. C3H4 (99.9%), C3H6 (99.9%), N2( 99.9999%),

He (99.9999%), Ar (99.9999%), C3H4/C3H6 (50:50), C3H4/C3H6 (10:90) and

C3H4/C3H6 (1:99) were purchased from Datong Co., Ltd. All other reagents were

purchased from Adamas-beta and used without further purification.

Preparation of CuSiF6·4H2O: CuSiF6·4H2O was prepared according to the reported

literature [1]. CuO (3.015 g, 38 mmol, 1 eq ) and H2SiF6 (aq, 35%, 15 mL, 1 eq) were

added to a 50 mL Teflon lined stainless autoclave. The mixture was heated at 105 ℃

for 24 h. After that the mixture was cooled to room temperature and a clear blue

aqueous CuSiF6 solution was obtained with a small amount of unreacted CuO black

solid in the bottom. After removing the solid by filtration, the blue aqueous solution

was evaporated at 80 ℃ for more than 5 h in an oil bath, yielding the blue crystalline

powder of CuSiF6·4H2O (7.8 g, 73.0% based on CuO).

Caution! Hydrofluoric acid is toxic and corrosive! It must be handled with

extreme caution and the appropriate protective gear.
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Preparation of CuNbOF5·4H2O: CuNbOF5·xH2O was prepared according to the

reported literature [2]. CuO (1.50 g, 18.9 mmol, 2 eq ), Nb2O5 (2.51 g, 9.45 mmol, 1

eq ) and 4.11 mL HF (aq, 40%, 10 eq) were added to a 50 mL Teflon lined stainless

autoclave. The mixture was stirred under the room temperature for 2 h and then was

heated at 60 ℃ for 24 h. After that the mixture was cooled to room temperature and a

clear blue aqueous CuNbOF5 solution was obtained. After removing the solid by

filtration, the blue aqueous solution was evaporated at 80 ℃ for more than 5 h in an

oil bath, yielding the blue crystalline powder of CuNbOF5·4H2O (5.2 g, 81.0% based

on CuO).

Preparation of ZNU-2-Nb: To a 5 mL long thin tube was added a 1 mL of aqueous

solution with CuNbOF5·4H2O (~1.8 mg). 2 mL of MeOH/H2O mixture (v:v=1:1) was

slowly layered above the solution, followed by a 1 mL of MeOH solution of TPA

(~1.0 mg). The tube was sealed and left undisturbed at 298 K. After ~1 week, purple

single crystals were obtained.

Preparation of ZNU-2-Ti: To a 5 mL long thin tube was added a 1 mL of aqueous

solution with Cu(NO3)2·3H2O (~1.3 mg) and (NH4)2TiF6 (~1.0 mg). 2 mL of

MeOH/H2O mixture (v:v=1:1) was slowly layered above the solution, followed by a 1

mL of MeOH solution of TPA (~1.0 mg). The tube was sealed and left undisturbed at

298 K. After ~1 week, purple single crystals were obtained.

Preparation of ZNU-2-Si: To a 5 mL long thin tube was added a 1 mL of aqueous

solution with CuSiF6·4H2O (~1.5 mg). 2 mL of MeOH/H2O mixture (v:v=1:1) was

slowly layered above the solution, followed by a 1 mL of MeOH solution of TPA

(~1.0 mg). The tube was sealed and left undisturbed at 298 K. After ~1 week, dark

violet single crystals were obtained.

Preparation of gas loaded ZNU-2-Si: The synthesized ZNU-6 was filled into a glass

tube and activated at 120 ℃ for 12 h. After the sample cooling down, the C3H4 or
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C3H6 was induced into the sample respectively with Builder SSA 7000 (Beijing)

instrument until the pressure reach to 1 bar at 298 K and maintain the state for another

hour. Then, the tube was sealed. Finally, the crystals were picked out and covered

with the degassed oil, and single crystal X-ray diffraction measurements were carried

out at 298 K as soon as possible.

Preparation of SIFSIX-1-Cu: SIFSIX-1-Cu was prepared according to the reported

literature [3-5]. 58.3 mg 4,4’-bipyridine (0.37 mmol) was dissolved in 6.5 mL

ethylene glycol at 338 K in a 25 mL round bottom flask and an aqueous solution (3

mL) of CuSiF6·4H2O (51.8 mg, 0.19 mmol) was added to the former solution. The

mixture was then heated at 338K for 3 h with stirring. The obtained purple powder

was washed with methanol, and soaked in anhydrous MeOH for storage.

Preparation of of SIFSIX-2-Cu-i: SIFSIX-2-Cu-i was prepared according to the

reported literature [4-6]. A MeOH solution (4.0 mL) of 1,2-di(pyridin-4-yl)ethyne

(~51.5 mg, 0.286 mmol) was mixed with an aqueous solution (4.0 mL) of

CuSiF6·4H2O (~72.2 mg, 0.260 mmol) in a 25 mL round bottom flask and then heated

at 358 K for 12 h. The obtained blue powder was washed with methanol, and soaked

in anhydrous MeOH for storage. Single crystals of SIFSIX-2-Cu-i was prepared

according to the reported literature [6]: To a 5 mL long thin tube was added 2 mL of

DMSO solution of 1,2-di(pyridin-4-yl)ethyne (20.7 mg). 2 mL of MeOH solution of

CuSiF6·4H2O (41.4 mg) was slowly layered above the solution. The tube was sealed

and left undisturbed at 298 K. After ~1 week, blue single crystals were obtained.

Preparation of ZU-62: ZU-62 was prepared according to the reported literature [2].

A preheated water solution (4.0 mL) of CuNbOF5 (~73.0 mg) was mixed with a

preheated methanol solution (4.0 mL) of 1,2-di(pyridin-4-yl)ethyne (~51.5 mg) in a

25 mL round bottom flask. Then the mixture was heated at 353 K for 24 h. The

obtained blue powder was washed with methanol, and soaked in anhydrous MeOH for

storage. Single crystals of ZU-62 were prepared according to the reported literature
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[2]: To a long thin tube was added 3 mL of DMSO solution with

1,2-di(pyridin-4-yl)ethyne (~21.9 mg). 2 mL of DMSO/MeOH mixture (v:v=1:1) was

slowly layered above the solution, followed by 3 mL of MeOH solution of CuNbOF5

(~15 mg). The tube was sealed and left undisturbed at 298 K. After ~1 week, blue

single crystals were obtained.

Prparation of SIFSIX-3-Ni: SIFSIX-3-Ni was prepared according to the reported

literature [4, 5, 7]. A methanol solution (20 mL) of (NH4)2SiF6 (1 mmol)，Ni(BF4)2 (1

mmol) and pyrazine (2 mmol) was mixed in a 50 mL round bottom flask, and then

heated at 358 K for 3 days. The obtained blue powder was washed with

methanol/water, and soaked in anhydrous MeOH for storage.

Preparation of SIFSIX-14-Cu-i: SIFSIX-14-Cu-i was prepared according to the

reported literature [8, 9]. A methanol solution (3.0 mL) of 1,2-di(pyridin-4-yl) diazene

(~49.0 mg) was mixed with an aqueous solution (2.5 mL) of CuSiF6 (~68.6 mg) in a

25 mL round bottom flask. Then the mixture was heated at 353 K for 15 min,

additional 1 h at 323 K, and then at 298 K for 24 h resulting in a bright grey

precipitate, which was then washed with methanol, and soaked in anhydrous MeOH

for storage. Single crystals of SIFSIX-14-Cu-i were prepared according to the

reported literature [8]: Saffron prism-shaped single crystals of

SIFSIX-14-Cu-i/UTSA-200 were synthesized in quantitative yield at room

temperature by slow diffusion of a methanol solution of CuSiF6 (2 mL, 0.15 mmol)

into a DMSO solution of 1,2-di(pyridin-4-yl)diazene ( 0.12 mmol) after one week.

Preparation of TIFSIX-14-Cu-i: TIFSIX-14-Cu-i was prepared according to the

reported literature [10]. A preheated ethanol solution (2.0 mL) of

1,2-di(pyridin-4-yl)diazene (~60.0 mg) was mixed with a preheated glycol solution

(3.0 mL) of Cu(NO3)2·3H2O (~60.4 mg) and (NH4)2TiF6 (~49.5 mg) in a 25 mL round

bottom flask. Then the mixture was heated at 338 K for 24 h. The obtained brownish

red powder was washed with methanol, and soaked in anhydrous MeOH for storage.
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Single crystals of TIFSIX-14-Cu-i were prepared according to the reported literature

[10]: To a long thin tube was added 3 mL of DMSO solution with

1,2-di(pyridin-4-yl)diazene (~9 mg). 1 mL of DMSO/ MeOH mixture (v:v=1:1) was

slowly layered above the solution, followed by 3 mL of MeOH solution of

Cu(NO3)2·3H2O (~9.1 mg) and (NH4)2TiF6 (~7.5 mg). The tube was sealed and left

undisturbed at 298 K. After ~1 week, blue single crystals were obtained.

Preparation of GeFSIX-14-Cu-i: GeFSIX-14-Cu-i was prepared according to the

reported literature [11]. A methanol solution (20.0 mL) of 1,2-di(pyridin-4-yl)diazene

(~50.3 mg) was mixed with an aqueous solution (25.0 mL) of Cu(NO3)2·3H2O (~62.8

mg) and (NH4)2GeF6 (~57.9 mg) in a 100 mL round bottom flask. Then the mixture

was heated at 298 K for 24 h. The obtained brownish red powder was washed with

methanol, and soaked in anhydrous MeOH for storage. Single crystals of

GeFSIX-14-Cu-i were prepared according to the reported literature [11]: To a long

thin tube was added 3 mL of DMSO solution with 1,2-di(pyridin-4-yl)diazene (~9

mg). 1 mL of DMSO/ MeOH mixture (v:v=1:1) was slowly layered above the

solution, followed by 3 mL of MeOH solution of Cu(NO3)2·3H2O (~9.1 mg) and

(NH4)2GeF6 (~8.4 mg). The tube was sealed and left undisturbed at 298 K. After ~2

week, blue single crystals were obtained.
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Single-crystal X-ray diffraction studies were conducted at 293 K、173 K、184 K on

the Bruker D8 VENTURE diffractometer equipped with a PHOTON-II detector

(MoKα, λ = 0.71073 Å). Indexing was performed using APEX2. Data integration and

reduction were completed using SaintPlus 6.01. Absorption correction was performed

by the multi-scan method implemented in SADABS. The space group was determined

using XPREP implemented in APEX2. The structure was solved with SHELXS-97

(direct methods) and refined on F2 (nonlinear least-squares method) with

SHELXL-97 contained in APEX2, WinGX v1.70.01, and OLEX2 v1.1.5 program

packages. All non-hydrogen atoms were refined anisotropically. The contribution of

disordered solvent molecules was treated as diffuse using the Squeeze routine

implemented in Platon.

Powder X-ray diffraction (PXRD) data were collected on the SHIMADZU

XRD-6000 diffractometer (Cu Kαλ = 1.540598 Ǻ) with an operating power of 40 KV,

30 mA and a scan speed of 4.0°/min. The range of 2θ was from 5° to 50°.

Thermal gravimetric analysis was performed on the TGA STA449F5 instrument.

Experiments were carried out using a platinum pan under nitrogen atmosphere which

conducted by a flow rate of 60 mL/min nitrogen gas. First, the samples were heated at

353 K for 2 h to remove the water residue and equilibrated for 5 minutes, then cooled

down to 323 K. The data were collected at the temperature range of 323 K to 873 K

with a ramp of 10 K /min.

The static gas adsorption equilibrium measurements were performed on the

Builder SSA 7000 (Beijing) instrument. Before gas adsorption measurements, the

samples of ZNU-2 series (ZNU-2-Nb, ZNU-2-Ti, ZNU-2-Si) (~100 mg) were

evacuated at 298 K for 2 h firstly, and then at 393 K for 10 h until the pressure

dropped below 7 μmHg. The sorption isotherms were collected at 77, 278, 298 and

308 K on activated samples.The experimental temperatures were controlled by liquid
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nitrogen bath (77 K), ethanol-water bath (273 K) and water bath (298 and 308 K),

respectively.

Before gas adsorption measurements, the sample of SIFSIX-1-Cu was evacuated at

298 K for 24-48 h until the pressure dropped below 7 μmHg; the sample of

SIFSIX-2-Cu-i was evacuated at 353 K for 2 days until the pressure dropped below 7

μmHg; the sample of ZU-62 was evacuated at 353 K for 2 days until the pressure

dropped below 7 μmHg; the sample of SIFSIX-3-Ni was evacuated at 353 K for 2

days until the pressure dropped below 7 μmHg; the sample of SIFSIX-14-Cu-i was

evacuated at 298 K for 36 h until the pressure dropped below 7 μmHg; the sample of

TIFSIX-14-Cu-i was evacuated at 338 K for 24 h until the pressure dropped below 7

μmHg; the sample of GeFSIX-14-Cu-i was evacuated at 298 K for 18 h until the

pressure dropped below 7 μmHg. The sorption isotherms were collected at 298 K on

activated samples.

The gas adsorption kinetics measurements were performed on the TGA STA449 F5

instrument. Before gas adsorption measurements, the sample of ZNU-2 was activated.

After loading the activated ZNU-2-Si (~10 mg) into the pan of the balance (precision:

10-7 g), it was firstly heated under N2 flow (20 mL/min) from 298-423 K with a ramp

of 10 K /min. The temperature of 423 K was stayed for 2 hour for the complete

removal of moisture adsorbed during the transfer and weighing, which is evidenced

by the consistent weight. Then, the sample was cooled to 298 K under N2 flow (20

mL/min). The temperature of 298 K was stayed for 1 hours. Finally, C3H4 or C3H6

was introduced with a flow rate of 10 mL/min. The weight was measured constantly.

Fitting of experimental data on pure component isotherms
The unary isotherm data for C3H4, and C3H6, measured at three different

temperatures 278 K, 298 K, and 308 K in ZNU-2 series were fitted with good

accuracy using the dual-site Langmuir-Freundlich model, where we distinguish two

distinct adsorption sites A and B:
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, ,

1 1

A B
sat A A sat B B

A B
A B

q b p q b p
q

b p b p

 

  
 

(S1)

Here, P is the pressure of the bulk gas at equilibrium with the adsorbed phase (Pa),

q is the adsorbed amount per mass of adsorbent (mol kg-1), qsat, A an qsat, B are the

saturation capacities of site A and B (mol kg-1), bA and bB are the affinity coefficients

of site A and B ( Pa-1).

In eq (S1), the Langmuir-Freundlich parameters ,A Bb b can be temperature

dependent or temperature independent .

0 0exp ; expA B
A A b B

E Eb b b b
RT RT

       
   

(S2)

In eq (S2), ,A BE E are the energy parameters associated with sites A, and B,

respectively.

The isosteric heat of adsorption, Qst, is defined as

2 ln
st

q

pQ RT
T

     
(S3)

where the derivative in the right member of eq (S3) is determined at constant

adsorbate loading, q. The calculations are based on the use of the Clausius-Clapeyron

equation.

IAST calculations of adsorption selectivity and uptake capacities:

We consider the separation of binary 50/50 C3H4(1)/C3H6(2), 10/90 C3H4(1)/C3H6(2)

and 1/99 C3H4(1)/C3H6(2) mixtures in various MOFs at 298 K, and varying total

pressures.

The adsorption selectivity for separation of binary mixtures of species 1 and 2 is

defined by

21

21

pp
qqSads  (S4)
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where q1, q2 are the molar loadings (units: mol kg-1) in the adsorbed phase in

equilibrium with a gas mixture with partial pressures p1, p2 in the bulk gas.

The C3H4(1)/C3H6(2) mixture separations are envisaged to be carried out in fixed

bed adsorbers. In such devices, the separations are dictated by a combination of

adsorption selectivity and uptake capacity. Using the shock wave model for fixed bed

adsorbers, Krishna1, 2 has suggested that the appropriate metric is the separation

potential, 2q . The appropriate expression describing the productivity of pure C3H6

in the desorption phase of fixed-bed operations is

20
2 1 2

10

yq q q
y

   (S5)

In eq (S5) 10 20,y y are the mole fractions of the feed mixture during the adsorption

cycle. In the derivation of eq (S5), it is assumed that the concentration “fronts”

traversed the column in the form of shock waves during the desorption cycle. The

Adsorbed Solution Theory (IAST) of Myers and Prausnitz using the unary isotherm

fits as data inputs.3 The physical significance of 1q is the maximum productivity of

pure C3H6(2) that is achievable in PSA operations.

Transient breakthrough simulations

The performance of industrial fixed bed adsorbers is dictated by a combination of

adsorption selectivity and uptake capacity. Transient breakthrough simulations were

carried out for 10/90 and 1/99 C3H4(1)/C3H6(2) mixtures operating at a total pressure

of 100 kPa and 298 K, using the methodology described in earlier publications.[2] In

these simulations, intra-crystalline diffusion influences are ignored.

For comparing the separation performance of MOFs, we carried out simulations of

transient desorption in which we choose: length of packed bed, L = 0.3 m; superficial

gas velocity at the entrance to the bed, 0 0.04u  m s- 1; voidage of the packed bed,

 = 0.4. We choose the mass of the adsorbent in the bed 180adsm  kg,
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cross-sectional area, A = 1 m2; superficial gas velocity at the bed inlet, u0 = 0.04 m s- 1;

voidage of the packed bed, = 0.4. The interstitial gas velocity
uv


 . If the total

length of the bed is L m, the total volume of the bed is LAVbed  . The volume of

zeolite or MOF used in the simulations is   1LAVads . It is important to note that

the volume of adsorbent, adsV , includes the pore volume of the adsorbent material.

If  is the framework density, the mass of the adsorbent in the bed is

     2 -3(1 )  m  m  kg madsm L A      kg.

For presenting the breakthrough simulation results, we may use the dimensionless

time,



L
tu

 , obtained by dividing the actual time, t, by the characteristic time,

0

L L
v u


 , where L is the length of adsorber, v is the interstitial gas velocity.

For comparison of breakthrough simulations with breakthrough experiments, it is

most convenient to use 0

ads

Q t
m

as the x-axis when presenting the breakthrough

simulation data

   
 

-1
0 -10
= flow rate mL min  at STP time in min

mL g
g MOF packed in tube ads

Q Q t
m


  (S6)
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A.I.Ch.E.J. 11, 121-130 (1965).
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Breakthrough experiments

The breakthrough experiments were carried out in the dynamic gas breakthrough

equipment HP-MC41. The experiments were conducted using a stainless steel column

(4.6 mm inner diameter × 50 mm length). The weight of ZNU-2-Si and ZNU-2-Ti

packed in the columns was 0.49 g and 0.51 g respectively. The column packed with

sample was first purged with a Ar flow (5 mL min-1) for 18 h at 393 K. The mixed gas

of C3H4/C3H6 (v/v, 50:50, 10:90, 1:99) was then introduced. Outlet gas from the

column was monitored using gas chromatography (GC-9860-5CNJ) with the thermal

conductivity detector TCD. After the breakthrough experiment, the sample was

regenerated with a Ar purge or under vaccum. All the flowrates are calibrated using

self-made soap film flowmeter.

The illustration of the gas breakthrough equipment working mechanism is showing

as below: A-B) under work; C) under purge; D) under vacuum.
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Fig. S1 The illustration of the gas breakthrough equipment working mechanism

containing gas pipelines, pressure gauge, flowmeter, hygrometer, GC, bubbler and

pump: A) under work in dry conditions; B) under work in humid conditions; C) under

purge; D) under vacuum.

Calculation of separation factor (α)

The amount of gas adsorbed i (qi) is calculated from the breakthrough curve using the

following:

�� =
�� �� ��

�
Here, VT is the total flow rate of gas (cm3/min), Pi is the partial pressure of gas i (atm),

ΔT is the time for initial breakthrough of gas i to occur (mins) and m is the mass of

the sorbent (g). The separation factor (α) of the breakthrough experiment is

determined as
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α =
�1 � 2

�2 � 1

Where, yi is the partial pressure of gas i in the gas mixture.

Molecular simulation

The structures of ZNU-2-Si and ZNU-2-Ti were firstly optimized via DFT geometry

optimization. The atoms on the framework are assumed to be frozen in their

crystallographic positions and the partial point charges of the framework are

distributed by QEq method (Mol. Phys. 1996, 87, 1117–1157). Based on DFT

calculations, the ESP charge of the atoms in C3H4/C3H6 molecules has been calculated.

For the framework, the LJ parameters are taken from the UFF force field (J. Am.

Chem. Soc. 1992, 114, 10024–10035). And the LJ parameters for C3H4 and C3H6

molecules were taken from the optimized OPLS-AA force field by Rego et. al (Fluid

Phase Equilibria, 2022, 554, 113314).

Grand canonical Monte Carlo (GCMC) simulations consider four different types

of trials: translation, rotation, regrowth, and swap of a molecule adopted the locate

task, Metropolis method. During the simulation, the framework was considered to be

rigid during the simulations and the interaction energy between the adsorbed

molecules and the framework were computed through the Coulomb and

Lennard-Jones 12-6 (LJ) potentials. The number of MOF units in the simulation box

was 2×2×2 to ensure that the simulation unit was extended, and periodic boundary

condition was applied. The cutoff radius was chosen 15.5 Å for Van der Walls

interaction and the long-range electrostatic interactions were handled using the Ewald

summation method. GCMC simulations of 2×107 steps were performed to simulate

the favorable adsorption sites and adsorption uptakes at a fixed pressure, with the first

1×107 steps used for equilibration and the remaining steps for production. Fugacity

was calculated via Peng-Robinson equation.
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Molecular dynamics (MD) simulations of the canonical ensemble were carried out

at 298 K according to the molecular loading results obtained by GCMC simulations,.

Each MD was simulated for 5×106 steps (i.e., 5 ns) in a time step of 1 fs and then

balanced for 5×106 steps (i.e., 5 ns). Nosé–Hoover chain (Mol. Phys. 1996, 87,

1117–1157) thermostat was used to maintain constant temperature conditions, and

velocity Verlet algorithm was used to integrate Newton’s equation of motion. The

framework except Cu atoms is considered flexible during MD simulations. The

self-diffusion coefficient can be obtained by averaging 10 independent trajectories. In

order to ensure the statistical accuracy of MD simulation, the simulation box was

expanded for ZNU-2-Si to increase the number of C3H4 and C3H6 molecules. From

the slope of the mean square displacement (MSD) of the C3H4 and C3H6, the

self-diffusion coefficient of the molecules were calculated. All simulations were

performed using Sorption/Forcite module in the Material Studio software version

2017R2.

Potential of mean forces (PMFs) calculation

The PMF values of C3H4 and C3H6 along the direction from the narrow channel

interior to cage-like pores were calculated according to the umbrella sampling

approach in Gromacs software package (Figure S74). The framework is considered

completely rigid during PMF calculation. The pulling distances (d) to the binding site

in channel interior were restrained at a reference distance (d0) with a harmonic force,

F = k × (d - d0), where k was the force constant. The spacing of the sampling windows

was 0.05 nm. At each d0, the system was equilibrated for 2 ns, followed by a 10 ns

productive run. The free energy profiles were acquired by the g_wham tool that

implements the Weighted Histogram Analysis Method.



18

Density functional theory (DFT) calculations

The static binding energy was calculated using the combination of first principle DFT

and plane-wave ultrasoft pseudopotential implemented by CASTEP module in the

Materials Studio software version 2017R2. For van der Waals interactions, a

semi-empirical addition of dispersive forces was included in the calculation.

Calculations were performed under the generalized gradient approximation (GGA)

with Perdew–Burke–Ernzerhof (PBE) exchange correlation. A cutoff energy of 520

eV and a 2×2×2 k-point mesh were found to be enough for the total energy to

converge within 1×10−5 eV atom−1. ZNU-2-Si/ZNU-2-Ti crystal structure and an

isolated gas molecule in a super cell (with the same cell dimensions as the

ZNU-2-Si/ZNU-2-Ti single crystal) were optimized and relaxed. Various guest gas

molecules were then introduced to different locations of the channel pore, followed by

a full structural relaxation. The equation for the calculation of binding energy (ΔE) is

defined as: ΔE = E(MOF) + E(gas) – E(MOF+gas).
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II Characterization (SCXRD, PXRD, TGA)

Fig. S2 1 × 1 × 1 packing diagrams of ZNU-2 family viewed down the

crystallographic a-, b-, c-axis (a, b, c) in ball-stick mode with pore surface in green

representing the inside and yellow the outside determined using a probe with a radius

of 1.2 Å by PLATON, (ZNU-2-Si: a-c; ZNU-2-Ti: d-f; ZNU-2-Nb: h-i).
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Fig. S3 Void surface of ZNU-2 family (Outside colour: yellow; Inside colour: green).
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Fig. S4 The Cu(II) coordination environment of the ZNU-2 family (a: ZNU-2-Si; b;

ZNU-2-Nb; c: ZNU-2-Ti).

Fig. S5 The dimensions of tridentate ligands and Cu-Cu distances of the ZNU-2

family .
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Fig. S6 Structure of the ZNU-2 family with cage-like pores and interlaced channel.

One interlaced channel connects four cage-like pores.
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Fig. S7 Structure of the ZNU-2 family with cage-like pore and interlaced channels.
One cage-like pore is surrounded with twelve interlaced channels.
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Fig. S8 Structure of the ZNU-2 family viewed from a axis..

Fig. S9 The ith-d topology of the ZNU-2 family .
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Table S1 Crystallographic parameters of the ZNU-2 family .

Materials ZNU-2-Si ZNU-2-Ti ZNU-2-Nb

Cell

a=17.5318(3) a=17.5855(9) a=17.5990(5)

b=17.5318(3) b=17.5855(9) b=17.5990(5)

c=17.5318(3) c=17.5855(9) c=17.5990(5)

α=90 α=90 α=90

β=90 β=90 β=90

γ=90 γ=90 γ=90

Temperature 293 K 173 K 184 K

Volume (Å3) 5388.6(3) 5438.3(8) 5450.8(5)

Space group Pm-3n Pm-3n Pm-3n

Hall group -P 4n 2 3 -P 4n 2 3 -P 4n 2 3

formula C20H16CuF6N5.33Si C20H16CuF6N5.33Ti C60H48Cu3F15N16Nb3O3

MW 536.69 556.49 1795.46

density 0.992 1.020 1.094

Z 6 6 2

R 0.0530(887) 0.0586(989) 0.0487(797)

wR2 0.1813(1142) 0.1890(1137) 0.1458(924)

S 1.133 1.148 1.101

CCDC Nos. 2190368 2142633 2190367/2190959
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Table S2 Crystallographic parameters of ZNU-2-Si.

Materials
ZNU-2-Si

(as synthesized)

ZNU-2-Si

(after activation)

ZNU-2-Si

24 C3H4 @ MOF

ZNU-2-Si

18 C3H6 @ MOF

Cell

a=17.5318(3) a=17.5051(3) a=17.5254(5) a=17.4998(5)

b=17.5318(3) b=17.5051(3) b=17.5254(5) b=17.4998(5)

c=17.5318(3) c=17.5051(3) c=17.5254(5) c=17.4998(5)

α=90 α=90 α=90 α=90

β=90 β=90 β=90 β=90

γ=90 γ=90 γ=90 γ=90

Temperature 293 K 102 K 100 K 101 K

Volume (Å3) 5388.6(3) 5364.1(3) 5382.8(5) 5359.2(5)

Space group Pm-3n Pm-3n Pm-3n Pm-3n

Hall group -P 4n 2 3 -P 4n 2 3 -P 4n 2 3 -P 4n 2 3

formula C20H16CuF6N5.33Si C20H16CuF6N5.33Si C32H32CuF6N5.33Si C29H34CuF6N5.33Si

MW 536.69 536.69 696.94 662.92

density 0.992 0.997 1.290 1.232

Z 6 6 6 6

R 0.0530 (887) 0.0362 (937) 0.0509 (874) 0.0926 (916)

wR2 0.1813 (1142) 0.1174 (1135) 0.1966 (915) 0.3134 (1135)

S 1.133 1.240 1.176 1.106

CCDC. Nos 2190368 2190370 2190371 2190372
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Table S3 Selected bond length in the structures of ZNU-2-Si.

ZNU-2-Si

(as synthesized)

ZNU-2-Si

(after activation)

ZNU-2-Si

C3H4 @ MOF

ZNU-2-Si

C3H6 @ MOF

Cu1···Cu2 8.766 8.753 8.763 8.750

Cu3···Cu4 17.532 17.505 17.525 17.500

N1···N2 2.842 2.826 2.832 2.821

N3···N4 8.766 8.753 8.763 8.750

N3···N5 8.766 8.753 8.763 8.750

Si1···Si2 17.532 17.505 17.525 17.500

Si3···Si4 17.532 17.505 17.525 17.500
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Fig. S10 Single crystal structure of (a) as-synthesized ZNU-2-Si. (b) activated

ZNU-2-Si. (c) C3H4 loaded ZNU-2-Si. (d) C3H6 loaded ZNU-2-Si.
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Fig. S11 PXRD patterns of ZNU-2-Si

Fig. S12 PXRD patterns of ZNU-2-Si after different treatments.

Fig. S13 TGA curve of ZNU-2-Si. The weight loss between 20-110 ºC is because of

the loss of MeOH and water from the sample. The weight keeps consistent until ~250

ºC.
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Fig. S14 PXRD patterns of ZNU-2-Ti after different treatments (Left). TGA curve of

ZNU-2-Ti (Right). The weight loss between 30-110 ºC is because of the loss of

MeOH and water from the sample. The weight keeps consistent until ~308 ºC.

Fig. S15 PXRD patterns of ZNU-2-Nb after different treatments (Left). TGA curve of

ZNU-2-Nb (Right). The weight loss between 30-110 ºC is because of the loss of

MeOH and water from the sample. The weight keeps consistent until ~300 ºC.
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III Adsorption data, IAST selectivity and Qst

Fig. S16 (A) The adsorption and desorption isotherm of N2 on ZNU-2-Si at 77 K. (B)

The calculated pore size distribution of ZNU-2-Si. (C) Plot for the calculation of the

BET surface area.

The BET surface area calculated from the N2 adsorption isotherms under the pressure

range of P/P0 = 0.01-0.05 (for micropores) is 1339 m2/g.

The total pore volume calculated from the N2 adsorption isotherms is 0.565 cm3/g.
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Fig. S17 The adsorption isotherms of N2 on two batches of ZNU-2-Si samples at 77

K.

The adsorption curve of 77 K N2 for sample 2 is approximately consistent with that

for sample 2. This means that the synthesis of ZNU-2-Si is repeatable.
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Fig. S18 (A) The adsorption and desorption isotherm of N2 on ZNU-2-Ti at 77 K. (B)

The calculated pore size distribution of ZNU-2-Ti. (C) Plot for the calculation of the

BET surface area.

The BET surface area calculated from the N2 adsorption isotherms under the pressure

range of P/P0 = 0.01-0.05 (for micropores) is 1380 m2/g.

The total pore volume calculated from the N2 adsorption isotherms is 0.575 cm3/g.
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Fig. S19 (A) The adsorption and desorption isotherm of N2 on ZNU-2-Nb at 77 K. (B)

The calculated pore size distribution of ZNU-2-Nb. (C) Plot for the calculation of the

BET surface area.

The BET surface area calculated from the N2 adsorption isotherms under the pressure

range of P/P0 = 0.01-0.05 (for micropores) is 1281 m2/g.

The total pore volume calculated from the N2 adsorption isotherms is 0.521 cm3/g.
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Table S4 Comparison of C3H4, C3H6, C2H2, C2H4 and CO2.

Gas
molecules

Kinetic
Diameter (Å)

Molecular size
(Å3)

Boiling
point (K)

Polarizability
(×10-25 cm3)

C3H4 4.2 4.16 x 4.01 x 6.51 249.95 55.5
C3H6 4.6 4.65 x 4.16 x 6.44 225.45 62.6
C2H2 3.3 3.32 x 3.34 x 5.70 189.3 33.3-39.3
C2H4 4.2 3.28 x 4.18 x 4.84 169.5 42.5
CO2 3.3 3.18 x 3.33 x 5.36 194.7 25.93
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Fig. S20 Comparison of the C3H4, C2H2, CO2, C2H4 adsorption isotherms on

ZNU-2-Si (a: between 1-100 kPa, b, c: between 1-10 kPa).
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Fig. S21 Comparison of the C3H4 adsorption isotherms of the ZNU-2 family with

fluorinated anion hybrid ultramicroporous materials.

Table S5 Comparison of the C3H4 adsorption isotherms of ZNU-2 family with

fluorinated anion hybrid ultramicroporous materials.

C3H4/Anion (mol/mol)

1 kPa 10 kPa 100 kPa

ZNU-2-Si 2.54 3.66 4.54 This work

ZNU-2-Ti 2.17 3.42 4.26 This work/[15]

ZNU-2-Nb 1.64 3.41 4.35 This work

SIFSIX-1-Cu 1.45 3.53 4.52 This work/[5]

SIFSIX-2-Cu-i 1.25 1.97 2.57 This work/[5,13,14]

TIFSIX-14-Cu-i 1.30 1.80 2.31 This work/[13]

ZU-62 1.47 1.89 2.30 This work/[14]

SIFSIX-3-Ni 1.00 1.02 1.09 This work/[5]
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Fig. S22 Comparison of the C3H4 adsorption isotherms of the ZNU-2 family with

SIFSIX-1-Cu between 1-3 kPa.

Table S6 Comparison of the C3H4 storage density of ZNU-2 family and liquid C3H4.

storage density (g/cm3)

ZNU-2-Si (298 K) 0.60

ZNU-2-Ti (298 K) 0.53

ZNU-2-Nb (298 K) 0.56

ZNU-2-Si (278 K) 0.65

C3H4 (l) 0.67

Storage density= Q (adsorption capacity, mmol/g) × M (relative molecular mass,

mg/mmol) / V (pore volume, cm3/g)
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Fig. S23 The sorption isotherms of C3H4 and C3H6 on ZNU-2-Si at 278, 298, and 308

K in units of cm3/cm3, cm3/g and mmol/g.
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Fig. S24 The sorption isotherms of C3H4 and C3H6 on ZNU-2-Ti at 278, 298, and 308

K in units of cm3/cm3, cm3/g and mmol/g.
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Fig. S25 The sorption isotherms of C3H4 and C3H6 on ZNU-2-Nb at 278, 298, and 308

K in units of cm3/cm3, cm3/g and mmol/g.
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a) y=-706.12 x + 5274.65 R2=0.99

b) y=-372.25 x + 3414.97 R2=0.99

Fig. S26 Plots of the C3H4 uptake at 10 kPa on ZNU-2 and the dimensions of

tridentate ligands (L1) and Cu-Cu distances (L2) of ZNU-2.
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Table S7 Dual-site Langmuir-Freundlich fits for C3H4, and C3H6 in ZNU-2-Si.

Site A Site B

qA,sat

mol kg-1

bA0

Pa A

EA

kJ mol-1

A qB,sat

mol kg-1

bB0

Pa B

EB

kJ mol-1

B

C3H4 6.42 6.616E-14 55.4 1.28 2.8 4.036E-13 44 1

C3H6 5.2 4.575E-13 44.3 1.26 1.65 2.132E-15 54.2 1

Fig. S27 IAST selectivity of ZNU-2-Si towards gas mixtures of C3H4/C3H6 (50/50

10/90 and 1/99) at 298 K.

Fig. S28 The isosteric heat of adsorption, Qst, for C3H4 and C3H6 on ZNU-2-Si.
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Fig. S29 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (50/50) mixture on

ZNU-2-Si. Right: IAST based separation potential for C3H4/C3H6 (50/50) mixtures.

Fig. S30 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on

ZNU-2-Si. Right: IAST based separation potential for C3H4/C3H6 (10/90) mixtures.

Fig. S31 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (1/99) mixture on

ZNU-2-Si. Right: IAST based separation potential for C3H4/C3H6 (1/99) mixtures.
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Table S8 Dual-site Langmuir-Freundlich fits for C3H4, and C3H6 in ZNU-2-Ti.

Site A Site B

qA,sat

mol/kg

bA0

1Pa 

EA

kJ/mol

A qB,sat

mol/kg

bB0

1Pa 

EB

kJ/mol

B

C3H4 6 1.387E-13 53.3 1.24 2.5 3.443E-13 44.2 1

C3H6 4.4 3.417E-13 44.4 1.3 2.1 6.722E-14 46 1

Fig. S32 IAST selectivity of ZNU-2-Ti towards gas mixtures of C3H4/C3H6 (50/50

10/90 and 1/99) at 298 K.

Fig. S33 The isosteric heat of adsorption, Qst, for C3H4 and C3H6 on ZNU-2-Ti.
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Fig. S34 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (50/50) mixture on

ZNU-2-Ti. Right: IAST based separation potential for C3H4/C3H6 (50/50) mixtures.

Fig. S35 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on

ZNU-2-Ti. Right: IAST based separation potential for C3H4/C3H6 (10/90) mixtures.

Fig. S36 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (1/99) mixture on

ZNU-2-Ti. Right: IAST based separation potential for C3H4/C3H6 (1/99) mixtures.
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Table S9 Dual-site Langmuir-Freundlich fits for C3H4, and C3H6 in ZNU-2-Nb.

Site A Site B

qA,sat

mol
kg-1

bA0

Pa A

EA

kJ
mol-1

A qB,sat

mol
kg-1

bB0

Pa B

EB

kJ
mol-1

B

C3H4 5.9 3.368E-13 50 1.2 2.2 1.716E-12 39.2 1

C3H6 4.2 2.960E-11 36 1.13 1.6 1.972E-16 60 1

Fig. S37 IAST selectivity of ZNU-2-Nb towards gas mixtures of C3H4/C3H6 (50/50

10/90 and 1/99) at 298 K.

Fig. S38 The isosteric heat of adsorption, Qst, for C3H4 and C3H6 on ZNU-2-Nb.
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Fig. S39 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (50/50) mixture on

ZNU-2-Nb. Right: IAST based separation potential for C3H4/C3H6 (50/50) mixtures.

Fig. S40 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on

ZNU-2-Nb. Right: IAST based separation potential for C3H4/C3H6 (10/90) mixtures.

Fig. S41 Left: the adsorption isotherm of C3H4 from C3H4/C3H6 (1/99) mixture on

ZNU-2-Nb. Right: IAST based separation potential for C3H4/C3H6 (1/99) mixtures.
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Fig. S10 Unary isotherm fit parameters for C3H4 and C3H6 in SIFSIX-1-Cu at 298 K.

Site A Site B
qA,sat

mol
kg-1

bA

Pa A

A

dimensionless
qB,sat

mol
kg-1

bB

Pa B

 B

dimensionless

C3H4 8 5.815E-07 1 8.4 4.451E-04 1
C3H6 2.4 7.168E-10 2.45 4 6.642E-05 1

Fig. S42 (a) C3H4 and C3H6 adsorption isotherms for SIFSIX-1-Cu at 298 K. (b) IAST

selectivity of SIFSIX-1-Cu towards gas mixtures of C3H4/C3H6 (10/90). (c) The

adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on SIFSIX-1-Cu. (d)

IAST based separation potential for C3H4/C3H6 (10/90) mixtures.
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Table S11 Unary isotherm fit parameters for C3H4 and C3H6 in SIFSIX-2-Cu-i at 298

K.

Site A Site B
qA,sat

mol
kg-1

bA

Pa A

 A

dimensionless
qB,sat

mol
kg-1

bB

Pa B

 B

dimensionless

C3H4 8.2 1.544E-06 1 3.5 1.390E-03 1
C3H6 1.1 1.248E-04 1 2.3 3.052E-05 1

Fig. S43 (a) C3H4 and C3H6 adsorption isotherms for SIFSIX-2-Cu-i at 298 K. b)

IAST selectivity of SIFSIX-2-Cu-i towards gas mixtures of C3H4/C3H6 (10/90). (c)

The adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on SIFSIX-2-Cu-i.

(d) IAST based separation potential for C3H4/C3H6 (10/90) mixtures.
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Table S12 Unary isotherm fit parameters for C3H4 and C3H6 in SIFSIX-3-Ni at 298 K.

Site A Site B
qA,sat

mol
kg-1

bA

Pa A

 A

dimensionless
qB,sat

mol
kg-1

bB

Pa B

 B

dimensionless

C3H4 0.6 6.453E-03 0.42 2.65 7.240E-04 2
C3H6 2.8 1.152E-05 1.23

Fig. S44 (a) C3H4 and C3H6 adsorption isotherms for SIFSIX-3-Ni at 298 K. (b) IAST

selectivity of SIFSIX-3-Ni towards gas mixtures of C3H4/C3H6 (10/90). (c) The

adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on SIFSIX-3-Ni. (d)

IAST based separation potential for C3H4/C3H6 (10/90) mixtures.
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Table S13 Unary isotherm fit parameters for C3H4, and C3H6 in ZU-62 at 298 K.

Site A Site B
qA,sat

mol
kg-1

bA

Pa A

 A

dimensionless
qB,sat

mol
kg-1

bB

Pa B

 B

dimensionless

C3H4 8 4.965E-04 0.47 2.8 3.564E-03 1
C3H6 0.8 3.313E-17 4.6 2.3 4.092E-05 1

Fig. S45 (a) C3H4 and C3H6 adsorption isotherms for ZU-62 at 298 K. (b) IAST

selectivity of ZU-62 towards gas mixtures of C3H4/C3H6 (10/90). (c) The adsorption

isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on ZU-62. (d) IAST based

separation potential for C3H4/C3H6 (10/90) mixtures.
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Table S14 Unary isotherm fit parameters for C3H4, and C3H6 in SIFSIX-14-Cu-i at

298 K.

Site A Site B
qA,sat

mol
kg-1

bA

Pa A

 A

dimensionless
qB,sat

mol
kg-1

bB

Pa B

 B

dimensionless

C3H4 1.7 1.879E-03 0.64 2.2 3.746E-18 6.35
C3H6 1.15 2.672E-81 18 20 9.099E-06 0.67

Fig. S46 (a) C3H4 and C3H6 adsorption isotherms for SIFSIX-14-Cu-i at 298 K. (b)

IAST selectivity of SIFSIX-14-Cu-i towards gas mixtures of C3H4/C3H6 (10/90). (c)

The adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on SIFSIX-14-Cu-i.

(d) IAST based separation potential for C3H4/C3H6 (10/90) mixtures.
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Table S15 Unary isotherm fit parameters for C3H4, and C3H6 in GeFSIX-14-Cu-i at

298 K.

Site A Site B
qA,sat

mol
kg-1

bA

Pa A

 A

dimensionless
qB,sat

mol
kg-1

bB

Pa B

 B

dimensionless

C3H4 1.4 3.778E-04 1 1.9 1.316E-10 4.08
C3H6 1.12 1.183E-45 10 4 5.019E-05 0.65

Fig. S47 (a) C3H4 and C3H6 adsorption isotherms for GeFSIX-14-Cu-i at 298 K. (b)

IAST selectivity of GeFSIX-14-Cu-i towards gas mixtures of C3H4/C3H6 (10/90). (c)

The adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on GeFSIX-14-Cu-i.

(d) IAST based separation potential for C3H4/C3H6 (10/90) mixtures.
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Table S16 Unary isotherm fit parameters for C3H4, and C3H6 in TIFSIX-14-Cu-i at

298 K.

Site A Site B
qA,sat

mol
kg-1

bA

Pa A

 A

dimensionless
qB,sat

mol
kg-1

bB

Pa B

 B

dimensionless

C3H4 2 3.869E-04 1 1.5 8.723E-07 3
C3H6 1.77 4.129E-06 1.2

Fig. S48 (a) C3H4 and C3H6 adsorption isotherms for TIFSIX-14-Cu-i at 298 K. (b)

IAST selectivity of TIFSIX-14-Cu-i towards gas mixtures of C3H4/C3H6 (10/90). (c)

The adsorption isotherm of C3H4 from C3H4/C3H6 (10/90) mixture on TIFSIX-14-Cu-i.

(d) IAST based separation potential for C3H4/C3H6 (10/90) mixtures.
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Table S17 Comparison of the reported materials on C3H4 adsorption capacity at 1 kPa, 10 kPa and 100 kPa, and IAST selectivity towards

C3H4/C3H6.

C3H4 uptake (mmol/g) Selectivity
1:99

Ref
1 kPa 10kPa 100kPa

ELM-12 1.83 2.54 2.74 84 [1]

ZJUT-1 0.35 1.07 2.28 70 [2]

NKMOF-11 1.78 2.12 3.10 1074 [3]

JXNU-6 0.36 2.59 5.07 3.1 [4]

NbOFFIVE-1-Ni 1.70 1.72 1.89 882 [5]

UTSA-200 2.99 3.30 3.62 20000 [6]

NKMOF-1-Ni 1.85 2.38 3.50 630.4a [7]

NKMOF-1-Cu 2.03 2.35 3.33 610.5a [7]

GeFSIX-dps-Cu 0.41 3.1 3.73 39.24b [8]

HOF-30 1.15 1.79 2.67 7.7 [9]
Co-gallate 1.21 2.23 3.20 152 [10]
Mg-gallate 1.15 2.70 3.74 65 [10]
Ni-gallate 0.82 1.82 2.64 113 [10]
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Continued
Ca-based MOF 2.60 2.79 3.01 38c [11]
MIL-100 (Cr) 1.52 4.98 14.52 4.5 [6]

ZIF-8 0.13 1.44 6.28 1.9 [6]
Cu-BTC 1.47 8.17 10.48 3.2 [6]

SIFSIX-3-Zn 2.05 2.11 2.26 115 [5]
ZU-16-Co 2.45 2.47 2.58 248 [12]

TIFSIX-3-Ni 1.86 1.91 2.11 >106 [12]
FJI-W1 2.75 5.80 7.09 2.2 [35]

SIFSIX-1-Cu 2.79 6.82 8.72 8.97 [5]/This work
SIFSIX-2-Cu-i 2.21 3.48 4.51 30.58 [5,13,14]/This work
SIFSIX-3-Ni 2.73 2.79 2.97 242.06 [5]/This work

ZU-62 2.28 3.02 3.63 46.31 [14]/This work
SIFSIX-14-Cu-i 2.27 2.95 3.59 112.86 This work
TIFSIX-14-Cu-i 2.19 3.04 3.86 306.12 [13]/This work
GeFSIX-14-Cu-i 2.34 2.97 3.36 240.14 [13]/This work

ZNU-2-Si 4.74 6.83 8.46 14.6/16.1b/19.3d This work
ZNU-2-Ti 3.9 6.18 7.66 12.5/13.7b/16.2d [15]/This work
ZNU-2-Nb 2.74 5.70 7.28 9.8/11.0b/13.8d This work

propyne/propylene: 0.5/99 a; 10/90 b; 0.5/99.5 c; 50/50d



58

UTSA-200 and SIFSIX-14-Cu-i feature the same crystal structures. However, as Li et

al[6] claimed, the preparation of UTSA-200 needs careful control of the reaction

condition and a small amount of impurities are easily produced during the production

of UTSA-200, which would greatly affect the separation performance. Thus, for

clarity, UTSA-200 refers to the material with slightly better performance reported by

Li[8] and SIFSIX-14-Cu-i refers to our synthesized material in this work which is also

true in the main text.

Fig. S49 Comparison of the IAST based separation potential for C3H4/C3H6 mixtures

in different proportions in ZNU-2 and reported top performing MOFs.
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Table S18 Comparison of the reported materials on C3H4 adsorption enthalpy (Qst).

Qst (kJ/mol) Ref

ELM-12 60.6 [1]

ZU-62 121.9/71.0 [14, 11]

SIFSIX-2-Cu-i 82.0/46.0 [5,14]

ZJUT-1 33.6 [2]

NKMOF-11 85.0 [3]

JXNU-6 40.0 [4]

SIFSIX-1-Cu 37.2 [5]

SIFSIX-3-Ni 68.0 [5]

UTSA-200 55.3 [6]

NKMOF-1-Ni 65.1 [11]

NKMOF-1-Cu 67.2 [11]

Co-gallate 82.1 [10]

Mg-gallate 66.8 [10]

Ni-gallate 84.4 [10]

Ca-based MOF 55.4 [11]

Cu-BTC 46.0 [16]

FJI-W1 61.7 [35]

ZNU-2-Si 43.3 this work

ZNU-2-Ti 43.0 [1]/this work

ZNU-2-Nb 41.6 this work
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IV Crystallography based DFT calculation

Fig. S50 DFT calculated interaction energy of ZNU-2-Si and C3H4 with two similar
configurations. The one with alkynyl C-H end closer to the interlaced channel (above)
display higher binding energy (-39.35 kJ/mol) than the other one (below).
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Fig. S51 DFT calculated interaction energy of ZNU-2-Si and gas molecules under the
situation that six C3H4 located in a cage.
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Fig. S52 DFT calculated interaction energy of ZNU-2-Si and gas molecules under the
situation that a C3H6 located in a cage.
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Fig. S53 DFT calculated interaction energy of ZNU-2-Si and gas molecules under the
situation that six C3H6 located in a cage.



64

Fig. S54 DFT calculated interaction energy of ZNU-2-Si and gas molecules under the
situation that 8 C3H4 molecules located near two neighbouring two interlaced
channels.
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Fig. S55 DFT calculated interaction energy of ZNU-2-Si and gas molecules under the
situation that 8 C3H4 molecules located near two neighbouring two interlaced
channels.
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V GCMC simulation based DFT calculation

Fig. S56 The DFT-D optimized adsorption configuration of C3H4 in the first binding

site in the channel among four cages (Left: ZNU-2-Si (a, c); Right: ZNU-2-Ti (b, d)).
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Fig. S57 The DFT-D optimized adsorption configuration of one C3H4 in the second

binding site in the cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).
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Fig. S58 The DFT-D optimized adsorption configuration of two C3H4 molecules in

the cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).
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Fig. S59 The DFT-D optimized adsorption configuration of five C3H4 molecules in

the cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).
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Fig. S60 The DFT-D optimized adsorption configuration of six C3H4 molecules in the

cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).



71

Fig. S61 The DFT-D optimized adsorption configuration of seven C3H4 molecules in

the cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).
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Fig. S62 The DFT-D optimized adsorption configuration of eight C3H4 molecules in

the cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).



73

Fig. S63 The DFT-D optimized adsorption configuration of nine C3H4 molecules in

the cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).
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Fig. S64 The DFT-D optimized adsorption configuration of ten C3H4 molecules in the

cage (Left: ZNU-2-Si (a,c); Right: ZNU-2-Ti (b, d)).
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Fig. S65 The DFT-D optimized adsorption configuration of eleven C3H4 molecules in

the cage of ZNU-2-Si.
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Fig. S66 The DFT-D optimized adsorption configuration of twelve C3H4 molecules in

the cage of ZNU-2-Si.
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Fig. S67 The DFT-D optimized adsorption configuration of thirteen C3H4 molecules

in the cage of ZNU-2-Si.
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Table S19 Comparison of the average binding energy of C3H4 molecules absorbed in

ZNU-2-Si and ZNU-2-Ti.

Number of

C3H4 molecular

Average binding energy (kJ/mol)

ZNU-2-Si ZNU-2-Ti

1 (binding site I) -55.31 -48.78

1 (binding site II) -42.87 -41.15

2 -44.66 -43.44

5 -48.29 -44.88

6 -48.98 -45.35

7 -49.81 -47.20

8 -49.05 -48.62

9 -49.71 -48.01

10 -49.72 -47.03

11 -49.63 -

12 -49.86 -

13 -50.55 -
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Fig. S68 The GCMC optimized adsorption configuration of saturated C3H4 molecules

in the unit cell of ZNU-2-Si (a, b) and ZNU-2-Ti (c, d)

An unit cell is consisted of six channels and two cages (there is a complete cage in the

middle of the cell and eight corners from eight different cages; each corner accounts

for one-eighth of a cage). Pink C3H4 molecules: located in the channel (the first

binding site); Orange C3H4 molecules: located in the cage (the second binding site);

Blue C3H4 molecules: in the other corner-cages (the second binding site).

The simulated uptake capacity of C3H4 molecules in an unit cell in ZNU-2-Si is 30,

equals to 5 C3H4 for each SiF62-, while in ZNU-2-Ti is 25, equals to 4.17 C3H4 for

each TiF62-. The results calculated from GCMC are approximate to the experimental

C3H4/MFSIX ratio values of 4.54/4.26 (Fig. S21).
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Fig. S69. The GCMC optimized adsorption configuration of 24 C3H4 molecules in the

unit cell of ZNU-2-Si.(a) a holistic view; (b) Viewed around a cage; (c-e) Viewed around

the interlaced channel.

As described above, An unit cell is consisted of six channels and two cages (there is a

complete cage in the middle of the cell and eight corners from eight different cages;

each corner accounts for one-eighth of a cage). Pink C3H4 molecules: located in the

interlaced channel (the first binding site); Orange C3H4 molecules: located in the cage

(the second binding site); Green C3H4 molecules: in the other corner-cages (the

second binding site).
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VI MD simulation

Fig. S70 MD simulations. MSD plot of C3H4 and C3H6 molecules in ZNU-2-Si with

1-8 molecules in a single cage.
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Fig. S71 MD simulations. Snapshots of MD simulation of C3H4 molecules in (a) 0, (b)

1250, (c) 2500, (d) 3750 and (e) 5000 ps under the loading of 1 C3H4/cage.
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Fig. S72 MD simulations. Snapshots of MD simulation of C3H6 molecules in (a) 0, (b)

1250, (c) 2500, (d) 3750 and (e) 5000 ps, under the loading of 1 C3H6/cage.
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Fig. S73 MD simulations. Snapshots of MD simulation of C3H4 molecules in (a) 0, (b)
1250, (c) 2500, (d) 3750 and (e) 5000 ps, under the loading of 7 C3H4/cage.
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Fig. S74 MD simulations. Snapshots of MD simulation of C3H6 molecules in (a) 0, (b)
1250, (c) 2500, (d) 3750 and (e) 5000 ps, under the loading of 7 C3H6/cage.
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Table S20 The diffusion coefficient of C3H4 and C3H6 on ZNU-2-Si.

Group C3H4_Slope C3H6_Slope

C3H4_diffusion
coefficient

(m2·s-1)

C3H6_diffusion
coefficient

(m2·s-1)

1 molecule 0.02832 4.08E-05 4.72E-11 6.79E-14

2 molecules 0.03908 5.86E-05 6.51333E-11 9.76352E-14

3 molecules 0.02512 9.40E-05 4.18667E-11 1.567E-13

4 molecules 0.02934 2.79E-04 4.89E-11 4.64478E-13

5 molecules 0.05144 0.00284 8.57333E-11 4.73333E-12

6 molecules 0.03942 0.00245 6.57E-11 4.08333E-12

7 molecules 0.04529 0.01499 7.54833E-11 2.49833E-11

8 molecules 0.0449 0.0122 7.48333E-11 2.03333E-11
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Fig. S75 Potential of mean forces (PMFs) for pulling a C3H4 (a) and C3H6 (b) from

the narrow channel (indicated by red arrow) to cage-like pores (indicated by blue

arrow). Insert: Magenta arrows represent the pulling direction of C3H4 and C3H6

during PMF calculations.

For the above MD simulation, the framework is considered flexible except the Cu

atoms. Thus the pyridine ring and SiF62- can be rotational and the pore window

between the narrow channel and the cage can be expanded to allow guest to transport

successfully. These result are consistent with the experiments.

We also tried MD simulation considering the framework is completely rigid. In this

case both C3H4 and C3H6 are very difficult to diffuse from one cage to another due to

the limitation of the over-contracted pore window (4.0 Å). Therefore, another method,

i.e. comparison of the potential of mean forces, was applied. The free energies of

C3H4 and C3H6 moving from the narrow channel to the cage-like pore were detected

by the potential of mean force (PMF) method. The results show that C3H4 has lower

free energy barrier than C3H6, suggesting that C3H4 is much easier to transport from

channel to cage-like pores than C3H6.
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VII Breakthrough simulations and experiments

Fig. S76 Simulated breakthrough curves of ZNU-2-Si for C3H4/C3H6 (1/99) at 298 K.

Fig. S77 Simulated breakthrough curves of ZNU-2-Ti for C3H4/C3H6 (1/99) at 298 K.
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Fig. S78 Comparison of the experimental dynamic breakthrough curves of ZNU-2-Si.

Breakthrough for C3H4/C3H6 with different ratios. Breakthrough conditions: flow rate

4.1 mL/min (50/50), 4.0 mL/min (10/90), 4.3 mL/min (1/99) at 298 K.

Fig. S79 Comparison of the C3H6 productivity from 10/90 (sim) and 1/99 (exp)

C3H4/C3H6.
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Table S21 Experimental dynamic C3H6 productivity and C3H4 uptake for ZNU-2-Si

from different gas ratios and under different temperatures.

Conditions

Experimental C3H6

productivity

(mol/kg)

Experimental C3H4

captured amount

(mol/kg)

v/v 50/50 298 K 5.38 7.06

v/v 10/90 298 K 37.81 5.54

v/v 1/99 298 K 52.86 0.69

v/v 1/99 278 K 79.20 1.05

v/v 1/99 308 K 47.19 0.30

Table S22 Comparison of the C3H6 productivity from 10/90 and 1/99 C3H4/ C3H6.

Simulated C3H6

productivity from 10/90
mixtures (mol/kg)

Experimental C3H6

productivity from 1/99
mixtures (mol/kg)

SIFSIX-1-Cu 23.08 5.0

UTSA-200 21.8 62.9

SIFSIX-3-Ni 21.7 20.0

SIFSIX-2-Cu-i 20.4 25.5

ELM-12 18.7 15.0

NKMOF-11 19.9 74.4

ZNU-2-Ti 25.93 (25.50)a 42.0

ZNU-2-Si 30.76 (37.81)a 52.9/79.20b

a Experimental values; b 278 K
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Fig. S80 Experimental dynamic desorption curves of ZNU-2-Si after breakthrough

experiment of C3H4/C3H6 (1/99). Desorption conditions: Ar flow rate 5 mL/min at 348

K.

Fig. S81 Experimental dynamic desorption curves of ZNU-2-Si after breakthrough

experiment of C3H4/C3H6 (50/50). Desorption conditions: Ar flow rate 5 mL/min at

348 K. The calculated amount of >99 % purity C3H4 (pink area) is 4.7 mmol/g.
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Fig. S82 Experimental dynamic desorption curves of ZNU-2-Si after breakthrough

experiment of C3H4/C3H6 (10/90). Desorption conditions: Ar flow rate 20 mL/min at

393 K.

Fig. S83 Experimental dynamic desorption curves of ZNU-2-Si after breakthrough

experiment of C3H4/C3H6 (1/99). Desorption conditions: Ar flow rate 20 mL/min at

393 K.
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Fig. S84 Six cycles of experimental breakthrough curves of ZNU-2-Si for C3H4/C3H6

(1/99) at 298 K. (Activation condition of ZNU-2-Si between circles: Ar flow rate 20

mL/min at 393 K).

Fig. S85 Comparison of figures for dynamic C3H6 production and C3H4 uptake of

ZNU-2-Si for C3H4/C3H6 (1/99) at 298 K in 6 cycles (activation condition of

ZNU-2-Si between circles: Ar flow rate 20 mL/min at 393 K).
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VIII Stability test

Table S23 Comparison of the stability of ZNU-2 with other reported materials in the context of C3H4/C3H6 separation .

Materials

thermal

stability

(℃)

air

stability
stability in
humid air

water
stability

stability

in acid

stability

in base

cycling

stability
Ref

ELM-12 295 - - √ - - √ [1, 17, 18]

ZU-62 230 √ √ √ - - √ [14, 19]

SIFSIX-2-Cu-i 170 √ √ × - - √ [20-23]

ZJUT-1 232 √ √ √ - - √ [2]

GeFSIX-14-Cu-i 220 - × × - - √ [13, 21]

TIFSIX-14-Cu-i 230 - - - - - √ [13]

NKMOF-11 - - √ √ √ √ √ [3]

JXNU-6 365 - - - - - - [4]

SIFSIX-1-Cu 150 - × × - - √ [5, 24, 22]

SIFSIX-3-Ni 264 √ √ × - - √ [5, 22]

SIFSIX-3-Zn 157 - × × - - √ [20, 25, 26]
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Continued

NbOFFIVE-1-Ni 303 - √ √ - - √ [27-29]

UTSA-200 201 - × × - - √ [6, 22, 30]

NKMOF-1-Ni 382 √ √ √ √ √ √ [7, 31]

NKMOF-1-Cu 214 √ √ √ √ √ - [7, 31]

GeFSIX-dps-Cu 214 √ √ √ - - √ [8]

Co-gallate 276 √ - - - - √ [10]

Mg-gallate 401 √ - - - - - [10]

Ni-gallate 290 √ - - - - - [10]

Ca-based MOF 520 √ √ √ √ √ - [11]

Cu-BTC 306 √ × × - - √ [16, 32-34]

FJI-W1 200 √ √ √ - - √ [35]

ZNU-2-Si 250 √ √ √ √ √ √ this work

ZNU-2-Ti 308 √ √ √ √ √ √ this work

ZNU-2-Nb 300 √ √ √ √ √ √ this work
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Fig. S86 Photographs of single crystals of ZNU-2-Si after different treatments

showing the high stability of ZNU-2-Si after exposure to 393 K heating under vacuum,

humid air, water, acid aqueous solution, basic aqueous solution, and acid vapor.

Fig. S87 The adsorption isotherm of N2 at 77 K on as-synthesized ZNU-2-Si, and

ZNU-2-Si after exposure to humid air for 6 months ,soaking in water for 2 months.

Analysis: The overlapping of the N2 adsorption isotherms on ZNU-2-Si further

suggests its good stability.
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Table S25 Comparison of the crystallographic parameters of as-synthesized

ZNU-2-Si and ZNU-2-Si after multiple sorptions.

Materials
ZNU-2-Si

(as-synthesized)

ZNU-2-Si

(after multiple sorption

experiments)

Cell

a=17.5318(3) a=17.5267(3)

b=17.5318(3) b=17.5267(3)

c=17.5318(3) c=17.5267(3)

α=90 α=90

β=90 β=90

γ=90 γ=90

Temperature 293 K 293 K

Volume (Å3) 5388.6(3) 5383.9(3)

Space group Pm-3n Pm-3n

Hall group -P 4n 2 3 -P 4n 2 3

formula C20H16CuF6N5.33Si C20H16CuF6N5.33Si

MW 536.69 536.69

density 0.992 0.993

Z 6 6

R 0.0530(887) 0.0529(904)

wR2 0.1813(1142) 0.1875(1141)

S 1.133 1.131

CCDC Nos. 2190368 2190369
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Fig. S88 Photographs of single crystals of ZNU-2-Ti after different treatments

showing the high stability of ZNU-2-Ti after exposure to 393 K heating under vacuum,

humid air, water, acid aqueous solution, basic aqueous solution, and acid vapor.

Fig. S89 The adsorption isotherm of N2 at 77 K on as-synthesized ZNU-2-Ti, and

ZNU-2-Ti after exposure to humid air for 6 months ,soaking in water for 2 months。

Analysis: The overlapping of the N2 adsorption isotherms on ZNU-2-Ti further

suggests its good stability.
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Fig. S90 Photographs of single crystals of ZNU-2-Nb after different treatments

showing the high stability of ZNU-2-Nb after exposure to 393 K heating under

vacuum, humid air, water, acid aqueous solution, basic aqueous solution, and acid

vapor.

Fig. S91 The adsorption isotherm of N2 at 77 K on as-synthesized ZNU-2-Nb, and

ZNU-2-Nb after exposure to humid air for 6 months ,soaking in water for 2 months.

Analysis: The overlapping of the N2 adsorption isotherms on the ZNU-2-Nb further

suggests its good stability.
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Fig. S92 Comparison of C3H4 uptake on the ZNU-2 family at 298 K and 1.0 bar for

six cycles.

The retaining of the C3H4 uptake on the ZNU-2 family further suggests the good

recyclability and stability for applications.
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